University of Helsinki

Biometry and Bioinformatics II Fall 2013

In silico prediction of protein-damaging single nucleotide variants

Virginia Brilhante

Helsinki, 9.10.2013

Outline (1/2)

Background

Outline (2/2)

- Software tools for prediction of protein-damaging SNVs
 - What are they (for)?
 - Some indicators of value
 - Evolutionary conservation premise

SIFT

- Algorithm overview
- Score, prediction and confidence

PolyPhen-2

- Algorithm overview
- Score, prediction and additional estimates
- Distinct tools, distinct predictions
- Considerations on accuracy and use in diagnostics
- Summary

Application: genetic diagnosis of mito disease patients

- Genetic diagnosis of suspected mitochondrial disease patients;
 better understanding of mitochondrial disorders
 - mitochondria are the organelles where cellular energy is generated
 - mitochondrial dysfunction
 - defective mitochondria-located proteins
 - bigenomic

An organelle that needs two genomes

Mitochondria

Application: genetic diagnosis of mito disease patients

- Causative mutations of mito disease
 - inherited
 - maternal (mtDNA), X-linked, autosomal dominant
 - autosomal recessive
 - supported by:
 - population structure in Finland
 - increased likelihood of some degree of parental consanguinity
 - suspected disorders in patient cohort
 - homozygous and compound heterozygous variants
 - de novo (sporadic)

Prediction of protein-damaging SNVs: one step within an exome variant data analysis pipeline

- Exome projects at the Wartiovaara group
 - partnership with the Institute for Molecular Medicine Finland (FIMM)
 - exome sequencing and variant calling
 - ~ 100 patients sequenced so far
- Exome
 - all exons of all genes in a genome protein coding regions
 - ~1% of the human genome
 - holds majority of mutations currently known to associate with hereditary diseases

Prediction of protein-damaging SNVs: one step within an exome variant data analysis pipeline

Prediction of protein-damaging SNVs: one step within an exome variant data analysis pipeline

Exome variant data analysis

Group Wartiovaara, Research Program for Molecular Neurology Biomedicum Helsinki, University of Helsinki

Mission: To understand the molecular background of mitochondrial disorders, and use that knowledge to develop diagnosis and therapy.

SIFT and PolyPhen-2

Software tools for prediction of protein-damaging SNVs

- What are they for?
 - prediction of the propensity of individual amino acid changes to damage protein function
 - restricted to aa substitutions caused by non-synonymous single nucleotide variants (nsSNVs) in DNA
 - make up more than 50% of human genetic variation known to be involved in inherited diseases
 - missense deleterious (or pathogenic) mutations
- In Craig Venter's genome:
 - 3 213 401 SNVs
 - 3 882 nsSNVs

Some indicators of value (1/2)

- SIFT and PolyPhen-2 are widely used
 - publicly available, Web-based tools
- Many other tools exist: Condel, Mutation taster, Panther, MAPP, etc.

SIFT

- developed at the Fred Hutchinson
 Cancer Research Center
- first published in 2001
- published in nature protocols in 2009
- server in J. Craig Venter Institute for about 6 years
- open source

PolyPhen-2

- main authors affiliated to Harvard Medical School and Max Planck Institute
- successor of PolyPhen published in 2002
- published in nature methods in 2010

Some indicators of value (2/2)

1000 Genomes

Proprietary software for analysis of NGS data

Evolutionary conservation premise

Important amino acids in a protein sequence are conserved

- Highly conserved amino acid positions in a protein sequence tend to be intolerant to substitution, whereas those with a low degree of conservation tolerate most substitutions
- Implicit assumption of change as deleterious
 - functional conservation
- Better applicability of the tools to monogenic diseases
 - similar conservation patterns between known complex disease nsSNVs and polymorphisms in the general population

SIFT

- Sorting Tolerant From Intolerant
- Predictions based only on conservation information obtained from a multiple alignment of homologous protein sequences

SIFT algorithm overview

- Figure for protein input
- 2. BLAST algorithm; UniProt and NCBI protein databases
- 3. Alignment of the query sequence with homologous sequences (MSA) found in step 2
- 4. Probabilities for all possible aa substitutions at each position used to estimate the SIFT score
 - aa freqs. in MSA
 - BLOSUM62 subst. scores
- 4. Conservation value is a measure of sequence diversity

SIFT score and prediction

- Score in the range [0, 1]
 - probability of an amino acid substitution caused by a nsSNV being tolerated

- score ≥ 0.05: 'TOLERATED' prediction
 - functionally neutral substitution
- score < 0.05: 'DAMAGING' prediction</p>
 - substitution affects protein function

Sequence diversity and confidence in predictions (1/2)

- Apart from highly conserved protein families, too little diversity (or, too much conservation) between the homologous sequences is not desirable for prediction
 - e.g.
 - multiple sequences of the same organism/protein in the BLASTsearched databases
 - conservation by chance in elapsed evolutionary time
 - ideally, functionally conserved orthologous sequences

Sequence diversity and confidence in predictions (2/2)

- SIFT uses a conservation value (Median Information Content) for each position in the sequence alignment
 - range [0, log₂20 (=4.32)] for protein sequences
 - 0: "min" conservation all 20 amino acids are observed
 - 4.32: "max" conservation only one amino acid is observed
 - ~3: target median conservation value of final set of SIFT-aligned sequences
 - aiming at optimum diversity within selected sequences

PolyPhen-2

- Employs a combination of features for prediction of pathogenicity of missense mutations:
 - sequence homology (SIFT uses just this)
 - protein structure information
 - physicochemical properties of amino acids

PolyPhen-2 algorithm overview (1/3)

From [Adzhubei 2009]

PolyPhen-2 algorithm overview (2/3)

- Sequence-based and structure-based predictive features
 - latter limited to proteins with known 3D structures
- Homology search using the BLAST algorithm over the UniProt database
- Multi-step alignment algorithm:
- 1. initial alignment (MAFFT -- Multiple Alignment using Fast Fourier Transform)
- 2. refinement of poorly aligned segments (Leon)
- 3. phylogenetic clustering (ClusPack); cluster containing query seq. is selected
- 4. alignment of selected cluster (MAFFT again)

PolyPhen-2 algorithm overview (3/3)

- Profile-based and identity-based scores
 - distinct MSA scopes
 - scores of conservation of an amino acid position using BLOSUM62 and considering, respectively:
 - the relatedness of the homologous sequences and the pattern of substitutions in the MSA as a whole
 - sequence identity between the query sequence and its closest homologues
- Probability (score) that a nsSNV is damaging (affects protein function) by a naïve Bayes classifier
 - assumptions of independence between the predictive features

PolyPhen-2 score and prediction

- nsSNV classes
 - 0.00 ≤ score ≤ 0.15: BENIGN
 - 0.15 < score ≤ 0.85: POSSIBILY DAMAGING</p>
 - 0.85 < score ≤ 1.00: PROBABLY DAMAGING</p>

- Additional estimates
 - true positive rate (sensitivity)
 - true negative rate (specificity)

Distinct tools may give distinct predictions

Distinctions in composition of predictive features and algorithms

SIFT prediction accuracy

- SIFT [Kumar 2009]
 - when applied to a dataset of nsSNVs found in disease-affected individuals:
 - 69% of the disease-associated variants predicted to affect protein function (true positive rate)
 - when applied to a dataset of nsSNVs in healthy individuals:
 - 19% of the variants predicted to affected protein function (false positive rate)

PolyPhen-2 prediction accuracy

- PolyPhen-2 [Adzhubei 2010]
 - applied to two datasets compiled from UniProt with variants annotated as disease-causing and non-annotated variants (assumed benign)
 - variants associated with human Mendelian diseases
 - 92% true positive rate
 - 20% false positive rate
 - variants associated with human genetic disease, more generally
 - 73% true positive rate
 - 20% false positive rate

Prediction tools in diagnostics

 "SIFT is intended to guide future experiments and not intended for direct use in a clinical setting, because in silico predictions are not a substitute for laboratory experiments." [Kumar 2009]

 Diagnostics of Mendelian diseases is mentioned as one of the applications of PolyPhen-2 in [Adzhubei 2010]

Summary

- SIFT and PolyPhen-2 are tools for predicting pathogenicity (damage to protein function) of missense mutations
 - great demand for computational prediction tools as sequencing technologies became more accessible
 - main underlying premise for prediction is evolutionary conservation
 - PolyPhen-2 uses amino acid chemistry and protein structure properties as added features
 - widely used in monogenic disease research settings with application in assisting genetic diagnosis
- SIFT and PolyPhen-2 often disagree and can be used as complementary tools

References

- Adzhubei I, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7(4):248–9.
- Bellance N, Lestienne P and Rossignol R. Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. Front Biosci 2009; 14:4015–34.
- Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nat Protoc* 2009; 4(7):1073–81.
- Kumar S, Dudley JT, Filipski A, Liu L. Phylomedicine: an evolutionary telescope to explore and diagnose the universe of disease mutations. *Trends Genet* 2011; 27(9):377–86.