Phylogeny methods based on distance matrices

- Clustering algorithms, based on distance matrices, are in the program of the
parallel course 582670 Algorithms for bioinformatics.

- During this course, Biometry and bioinformatics 11, lecture time will not be
devoted to this topic. Instead, you are supposed to read the chapter (20
pages) copied here from the book Lemey et al., The phylogenetic handbook,
2009, www.cambridge.org/9780521877107

- In addition to clustering methods, this book chapter includes also other
general issues, such as bootstrapping, basics of model choice.
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5.1 Introduction
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In addition to maximum parsimony (MP) and likelihood methods (see Chapters o,
7 and #), pairwise distance methods form the third large group of methods to infer
evolutionary trees from sequence data (Fig. 5.1). In principle, distance methods
try to fit a tree to a matrix of pairwise genetic distances (Felsenstein, 1988).
For every two sequences, the distance is a single value based on the fraction of
positions in which the two sequences differ, defined as p-distance (see Chapter 4).
The p-distance is an underestimation of the true genetic distance because some
of the nucleotide positions may have experienced multiple substitution events.
Indeed, because mutations are continuously fixed in the genes, there has been an
increasing chance of multiple substitutions occurring at the same sequence position
as evolutionary time elapses. Therefore, in distance-based methods, one tries to
estimate the number of substitutions that have actually occurred by applying a
specific evelutionary model that makes particular assumptions about the nature
of evolutionary changes (see Chapter 4). When all the pairwise distances have been
computed for a set of sequences, a tree topology can then be inferred by a variety
of methods (Fig. 5.2).

Correct estimation of the genetic distance is crucial and, in most cases, more
important than the choice of method to infer the tree topology. Using an unrealistic
evolutionary model can cause serious artifacts in tree topology, as previously shown

The Fhylogeneric Handlook: a Practical Approach to Phylogeretic Analysis and Hypothesis Testing,
Philippe Lemey. Marco Salemi, and Anne-Micke Vandamme (eds.). Published by Cambridge
University Press. £ Cambridge University Press 2009,
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Fig. 5.1 Pairwise distance methods are non-character-based methods that make use of an explicit
substitution model.
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Step 2

Infer tree topology on the basis of estimated evolutionary distances

Fig. 5.2

Distance methods proceed in two steps. First, the evolutionary distance is computed for
every sequence pair. Usually, this information is stored in 3 matrix of painwise distances.
Second, a tree topology is inferred on the basis of the specific relationships between the
distance values.

in numerous studies (e.g. Olsen, 1987; Lockhart et al, 1994; Van de Peer et al., 1996;
see also Chapter 10). However, because the exact historical record of events that
occurred in the evolution of sequences is not known, the best method for estimating
the genetic distance is not necessarily self-evident.

Substitution models are discussed in Chapters 4 and 10. The latter discusses how
to select the best-fitting evolutionary model for a given data set of aligned nucleotide
or amino acid sequences in order to get accurate estimates of genetic distances. In
the following sections, it is assumed that genetic distances were estimated using
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an appropriate evolutionary model, and some of the methods used for inferring
tree topologies on the basis of these distances are briefly outlined. However, by
no means should this be considered a complete discussion of distance methods;
additional discussions are in Felsenstein (1982), Swofford et al. {1996), Li {1997),
and Page & Holmes (1998).

5.2 Tree-inference methods based on genetic distances

The main distance-based tree-building methods are cluster analysis and minimum
evolution. Both rely on a different set of assumptions, and their success or failure
in retrieving the correct phylogenetic tree depends on how well any particular data
set meets such assumptions.

5.2.1 Cluster analysis (UPGMA and WPGMA)
Clustering methods are tree-building methods that were originally developed to
construct taxonomic phenograms(Sokal & Michener, 1955; Sneath & Sokal, 1973);
that is, trees based on overall phenotypic similarity. Later, these methods were
applied to phylogenetics to construct ultrametric trees. Ultrametricity is satishied
when, for any three taxa, A, B, and C,

dac < max(dag, dsc). (5.1)

In practice, (5.1) is satisfied when two of the three distances under consideration
are equal and as large (or larger) as the third one. Ultrametric trees are rooted trees
in which all the end nodes are equidistant from the root of the tree, which is only
possible by assuming a molecular clock (see Chapter 11). Clustering methods such
as the unweighted-pair group method with arithmetic means (UPGMA) or the
weighted-pair group method with arithmetic means ( WPGMA) use a sequential
clustering algorithm. A tree is built in a stepwise manner, by grouping sequences or
groups of sequences — usually referred to as operational taxonomic units (OTUs) —
that are most similar to each other; that is, for which the genetic distance is the
smallest. When two OTUs are grouped, they are treated as a new single OTU
(Box 5.1). From the new group of OTUs, the pair for which the similarity is highest
is again identified, and so on, until only two OTUs are left. The method applied
in Box 5.1 is actually the WPGMA, in which the averaging of the distances is not
based on the total number of OTUs in the respective clusters. For example, when
OTUs A, B (which have been grouped before), and C are grouped into a new node
“1,” then the distance from node “u” to any other node “k” (e.g. grouping D and
E) is computed as follows:

dia mik + dci

i (5.2)
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Box 5.1 Cluster analysis (Sneath & Sokal, 1873)
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Cluster analysis proceeds as follows:

(1) Group together (cluster) these OTUs for which the distance is minimal; in this case
group together A and B. The depth of the divergence is the distance between A and
B divided by 2.

(2) Compute the distance from cluster (A, B) to each other OTU

diagic = [dac +dge) /2 =4 (ABy C D E
dixgip = (dap + dan )2 =6
diagie = (dag + dee) /2 =6
diagr = (dag + dpp) /2 =8
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Repeat steps 1 and 2 until all OTUs are clustered (repeat until N = 2)
H=N—l=5

(1) Group together (cluster} these OTUs for which the distance is minimal, e.g. group
together D and E. Alternatively, (AB) could be grouped with C.

= D
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Box 5.1 (cont.)

(2) Compute the distance from claster (I), E) to each other OTU {cluster)

dipeias) = (dpiag) + deam )2 =6
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(1) Group together these OTUs for which the distance is minimal, e.g. group (A, B)

and C
¥
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(2) Compute the distance from cluster (A, B, C) to each other OTU [ cluster)

diancioe = (dopyioe + dope))/2 =6 I {ABC) (DE)
diancir = (diags + dop) /2 =8
30
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(1) Group together these OTUs for which the distance is minimal, e.g. group (A, B, C)
and (D, E)
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(2) Compute the distance from cluster (A, B, C, D, E) to OTU F

Aapcpee = (diascr + dipes) /2 = 8 | (ABC). (DE)
:
=N —l =2
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Conversely, in UPGMA, the averaging of the distances is based on the number
of OTUs in the different clusters; therefore, the distance between “u” and “k" is
computed as follows:

(Napdia m + chr:k}
(Nap + Ne)
where Ny equals the number of OTUs in cluster AB (i.e. 2) and N¢ equals the

number of OTUs in cluster C (i.e. 1). When the data are ultrametric, UPGMA and
WPGMA have the same result. However, when the data are not ultrametric, they

(5.3)

uk =

can differ in their inferences.

Until about 15 years ago, clustering was often used to infer evolutionary trees
based on sequence data, but this is no longer the case. Many computer-simulation
studies have shown that clustering methods such as UPGMA are extremely sensitive
to unequal rates in different lineages (e.g. Sourdis & Krimbas, 1987; Huelsenbeck &
Hillis, 1993). To overcome this problem, some have proposed methods that con-
vert non-ultrametric distances into ultrametric distances. Usually referred to as
transformed distance methods, these methods correct for unequal rates among dif-
ferent lineages by comparing the sequences under study to a reference sequence
or an outgroup (Farris, 1977; Klotz et al, 1979; Li, 1981). Once the distances
are made ultrametric, a tree is constructed by clustering, as explained previously.
Nevertheless, because there are now better and more effective methods to cope
with non-ultrametricity and non-clock-like behavior, there is little reason left to
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Fig. 5.3
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Four-point condition. Letters on the branches of the unrooted tree represent branch lengths.
The function min | returns the minimum among a set of values.

use cluster analysis or transformed distance methods to infer distance trees for
nucleotide or amino acid sequence data.

5.2.2 Minimum evolution and neighbor-joining

Because of the serious limitations of ordinary clustering methods, algorithms were
developed that reconstruct so-called additive distance trees. Additive distances sat-
isfy the following condition, known as the four-point metric condition (Buneman,
1971): for any four taxa, A, B, C, and D,

dap + dep = max(dac + dep, dan + dic) (5.4)

Only additive distances can be fitted precisely into an unrooted tree such that
the genetic distance between a pair of OTUs equals the sum of the lengths of the
branches connecting them, rather than an average, as in the case of cluster analysis.
Why (5.4) needs to be satisfied is explained by the example shown in Fig. 5.3. When
A, B, C, and D are related by a tree in which the sum of branch lengths connecting
two terminal taxa is equal to the genetic distance between them, such as the tree in
Fig. 5.3, dag + dcp is always smaller or equal than the minimum between dac +
dpp and dyp + dpc (see Fig. 5.3). The equality only occurs when the four sequences
are related by a star-like tree; that is, only when the internal branch length of the
tree in Fig. 5.3 is e= 0 (see Fig. 5.3). If (5.4) is not satisfied, A, B, C, and D cannot
be represented by an additive distance tree because, to maintain the additivity of
the genetic distances, one or more branch lengths of any tree relating them should
be negative, which would be biologically meaningless. Real data sets often fail
to satisy the four-point condition; this problem is the origin of the discrepancy
between actual distances (i.e. those estimated from pairwise comparisons among
nucleotide or amino acid sequences) and tree distances (i.e. those actually fitted
into a tree) (see Section 5.2.3).

If the genetic distances for a certain data set are ultrametric, then both the
ultrametric tree and the additive tree will be the same if the additive tree is rooted
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at the same point as the wultrametric tree. However, if the genetic distances are
not ultrametric due to non-clock-like behavior of the sequences, additive trees
will almost always be a better fit to the distances than ultrametric trees. However,
because of the finite amount of data available when working with real sequences,
stochastic errors usually cause deviation of the estimated genetic distances from
perfect tree additivity. Therefore, some systematic error is introduced and, as a
result, the estimated tree topology may be incorrect.

Minimum evolution ( ME) is a distance method for constructing additive trees
that was first described by Kidd & Sgaramella-Zonta (1971); Rzhetsky & Nei ( 1992)
described a method with only a minor difference. In ME, the tree that minimizes
the lengths of the tree, which is the sum of the lengths of the branches, is regarded
as the best estimate of the phylogeny:

In-3

5= z v {5-5}
i=l

where 1 is the number of taxa in the tree and v; is the fth branch (remember that
there are 2n—3 branches in an unrooted tree of n taxa). For each tree topology,
it is possible to estimate the length of each branch from the estimated pairwise
distances between all OTUs. In this respect, the method can be compared with the
maximum parsimony (MP) approach (see Chapter 8), but in ME, the length of
the tree is inferred from the genetic distances rather than from counting individual
nucleotide substitutions over the tree (Rzhetsky & Nei, 1992, 1993; Kumar, 1996).
The minimum tree is not necessarily the “true” tree. Nei et al. (1998) have shown
that, particularly when few nucleotides or amino acids are used, the “true” tree
may be larger than the minimum tree found by the optimization principle used
in ME and MP. A drawback of the ME method is that, in principle, all different
tree topologies have to be investigated to find the minimum tree. However, this
is impossible in practice because of the explosive increase in the number of tree
topologies as the number of OTUs increases (Felsenstein, 1978); an exhaustive
search can no longer be applied when more than ten sequences are being used (see
Chapter 1).

A good heuristic method for estimating the ME tree is the neighbor-joining (NJ)
method, developed by Saitou & Nei (1987) and modified by Studier & Keppler
(1988). Because NJ is conceptually related to clustering, but without assuming a
clock-like behavior, it combines computational speed with uniqueness of results.

NJ is today the method most commonly used to construct distance trees.
Box 5.2 is an example of a tree constructed with the NJ method. The method
adopts the ME criterion and combines a pair of sequences by minimizing the
S value (see 5.5) in each step of finding a pair of neighboring OTUs. Because
the Svalue is not minimized globally (Saitou & Nei, 1987; Studier & Keppler, 1988),
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Box 5.2 The neighbor-joining method (Saitou & Nei, 1987; modified from Studier
& Keppler, 1988)

1 | 4 B

o c Hypothetical tree topology: since the
1 divergence of sequences A and B, B has
3 D accumulated four times as many

1 mutations as sequence A,

i
4
F

Suppose the following matrix of pairwise evolutionary distances:

Clustering methods (discussed in Box 5.1}
A B C D E would erroneously group sequences A and

m oo & m

n

C, since they assume clock-like behavior.
Although sequences A and C look

@ 7 more similar, sequences A and B
are more closely related.

7 10 7
€ 8 @ 5 & A
B 11 B 9 B 2

Neighbor-joining proceeds as follows:

(1)

{2)

Compute the net divergence r for every endnode (N = &)

fA=5+4+7+6+8=30 rp=38
p=5+7+10+9+11 =47 rp =34
To=231 e=44

Create a rate-corrected distance matrix; the elements are defined by M; = d;; —

{ri +ri) /(N —2)

Mg =dpp— (ra+rg)/(N—2)=5— (30 +42)/4 = —13
Mic=....
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(3)

(4)

(5)

A B c B] E
A

© s
C |-115 —115 /
D| -10 -10 -105
E| -0 -0 -105 @

F c
F [-105 —106 —11 -116 —115 D

Define a new node that groups OTUs i and j for which M; is minimal
For example, sequences A and B are neighbors and form a new node U (but, alter-
natively, OTUs D and E could have been joined; see further)

Compute the branch lengths from node Uto A and B

Sy = dﬁ_ﬂ,‘rz +(ra — fEl:Ilu'IZ{.N- —21=1

Spr = dag — Sau =4

or alternatively

Spu = g {2 +(rp —ra)fAAN—2) =4
Sgr — dag — Spyp =1

Compute new distances from node U to each other terminal node

Aoy = (dac + doe — dap) /2 =3
dpy = (dap + den — dan)/2 = 6
gy = (dag + dge — dag) /2 =5
dpy = (dar + dor — dus) /2 =7

U € D E c
c| 3 2 A
D|le 7 U,
E|5 B & 4
F|l7 B8 3 8 . ;
B

(6) N = N — 1; repeat step 1 through 5
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Box 5.2 (cont.)

(1) Compute the net divergence r
for every endnode (N = 5)
=21 =24
=2 =32
=27

(2) Compute the modified
distances:

nom oo o
i
=
[

=107 -107 107 107

(3) Define a new node: e.g. U and C
are neighbors and form a new
node V; alternatively, D and E
could be joined

(1) Compute the net divergence r
for every endnode (N = 4)

=15 g —1%
m=19 =13

(2) Compute the modified
distances
| v D E

D| -2

(3) Define a new node: e.g. D and E are
neighbors and form a new node W;
alternatively, F and V could be joined

{4) Compute the branch lengths from
node V to C and U

Suv = dopf2+ (ru—re)f2{N—-2) =1
Sov = doy — Syy =2

{5) Compute distances from V to
each other terminal node

dpy = (dpy + deg — dop) /2 =5
dgy = (dpy + deg — dop) /2 =4
dpy = (dpy + dop — deop)f2 =6

D
R £ "
2 [ U
E| .4 5 ”'Zx
F|l & 9o B F
€ B

(6] N = N — 1; repeat step 1 through 5

{4) Compute the branch lengths from
node W to Eand D

Snw = JDEJFZ . {fn == FF}JI'IEfN e

Sow = dpg — Sow = 2

{5) Compute distances from W to
each other terminal node

dhyw = (dpy + dgy — dpg) /2 =12
dpw = (dp: + g — dpe)f2 =6

E
(6) N = N — 1; repeat step 1 through 5
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(1) Compute the net divergence r (4) Compute the branch lengths from
for every endnode (N = 3) XtoVandF
=48 =17 rn—=—=8 S\m:dpuf'r2+|:’r1,'—ﬂ::||.'r2{N—2)=l

Spx = dpy — Sy =5

(2} Compute the modified distances {5) Compute distances from X to

each other terminal node
| w v
V(&)
AT

dwx = (drw + dyw — dey) (2 =1

(3} Define a new node: e.g. V and F are w
neighbors and form a new node X;
Alternatively, W and V could be x| 1

joined, or W and F could be joined

1 - B

2

1 C
3

: b}

£y

If the root is placed between F and (A, B, C, D, and E),
4 E the “true” rooted tree topology is obtained

the NJ tree may not be the same as the ME tree if pairwise distances are not
additive (Kumar, 1996). However, NJ trees have proven to be the same or similar
to the ME tree (Saitou & Imanishi, 1989; Rzhetsky & Nei, 1992, 1993; Russo
et al., 1996; Nei et al., 1998). Several methods have been proposed to find ME trees,
starting from an NJ tree but evaluating alternative topologies close to the NJ tree
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by conducting local rearrangements (e.g. Rzhetsky & Nei, 1992), Nevertheless, it is
questionable whether this approach is really worth considering (Saitou & Imanishi,
1989; Kumar, 1996), and it has been suggested that combining NJ and bootstrap
analysis (Felsenstein, 1985) might be the best way to evaluate trees using distance
methods (MNei et al., 1998).

Recently, alternative versions of the NJ algorithm have been proposed, includ-
ing BION] (Gascuel, 1997), generalized neighbor-joining (Pearson et al., 1999),
weighted neighbor-joining or weighbor (Bruno et al,, 2000), neighbor-joining
maximum-likelihood (NJML; Ota & Li, 2000), QuickJoin (Mailund & Pedersen,
2004), multi-neighbor-joining (Silva er al., 2005) and relaxed neighbor-joining
(Evans et al, 2006). BION] and weighbor both consider that long genetic dis-
tances present a higher variance than short ones when distances from a newly
defined node to all other nodes are estimated (see Box 5.2). This should result
in higher accuracy when distantly related sequences are included in the analy-
sis. Furthermore, the weighted neighbor-joining method of Bruno et al. (2000)
uses a likelihood-based criterion rather than the ME criterion of Saitou & Nei
(1987) to decide which pair of OTUs should be joined. NJML divides an initial
neighbor-joining tree into subtrees at internal branches having bootstrap values
higher than a threshold (Ota & Li, 2000). A topology search is then conducted
using the maximum-likelihood method only re-evaluating branches with a boot-
strap value lower than the threshold. The generalized neighbor-joining method of
Pearson et al. (1999) keeps track of multiple, partial, and potentially good solutions
during its execution, thus exploring a greater part of the tree space. As a result,
the program is able to discover topologically distinct solutions that are close to
the ME tree. Multi-neighbor-joining also keeps various partial solutions resulting
in a higher chance to recover the minimum evolution tree (Silva et al,, 2005).
QuickJoin and relaxed neighbor-joining use heuristics to improve the speed of
execution, making them suitable for large-scale applications (Mailund & Pedersen,
2004; Evans et al., 2006},

Figure 5.4 shows two trees based on evolutionary distances inferred from 20
small subunit ribosomal RNA sequences (Van de Peer et al., 2000a). The tree in
Fig. 5.4a was constructed by clustering (UPGMA) and shows some unexpected
results. For example, the sea anemone, Anemonia sulcata, clusters with the fungi
rather than the other animals, as would have been expected. Furthermore, neither
the basidiomycetes nor the ascomycetes form a clear-cut monophyletic grouping.
In contrast, on the NJ tree all animals form a highly supported monophyletic
grouping, and the same is true for basidiomycetes and ascomycetes. The NJ tree
also shows why clustering could not resolve the right relationships. Clustering
methods are sensitive to unequal rates of evolution in different lineages; as is
clearly seen, the branch length of Anemonia sulcata differs greatly from that of the
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Fig. 5.4 Phylogenetic trees based on the comparison of 20 small subunit ribosomal RMA sequences.
Animals are indicated by light gray shading; dark gray shading indicates the basidiomycetes.
The scales on top measure evolutionary distance in substitutions per nucleotide. The red
alga Paimaria paimata was used to root the tree. (a) Ultrametric tree obtained by dustering.

(b) Neighbor-joining tree.
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other animals. Also, different basidiomycetes have evolved at different rates and,
as a result, they are split into two groups in the tree obtained by clustering (see
Fig. 5.4a).

5.2.3 Other distance methods

It is possible for every tree topology to estimate the length of all branches
from the estimated pairwise distances between all OTUs (e.g. Fitch & Margo-
liash, 1967; Rzhetsky & Nei, 1993). However, when summing the branch lengths
between sequences, there is usually some discrepancy between the distance obtained
(referred to as the tree distance or patristic distance) and the distance as estimated
directly from the sequences themselves (the observed or actual distances) due to
deviation from tree additivity (see Section 5.2.2). Whereas ME methods try to find
the tree for which the sum of the lengths of branches is minimal, other distance
methods have been developed to construct additive trees depending on good-
ness of fit measures between the actual distances and the tree distances. The best
tree, then, is that tree that minimizes the discrepancy between the two distance
measures. When the criterion for evaluation is based on a least-squares fit, the
goodness of fit Fis given by the following:

F = Zu’f,i':Df,i = dr'j:lz [5.6}
ij

where Dj; is the observed distance between i and j, dj; is the tree distance between
i and j, and wy is different for different methods. For example, in the Fitch and
Margoliash method (1967), wy equals 1/ ij'. in the Cavalli-Sforza and Edwards
approach (1967), wj equals 1. Other values for wy; are also possible (Swofford et al.,
1996 ) and using different values can influence which tree is regarded as the best. To
find the tree for which the discrepancy between actual and tree distances is minimal,
one has in principle to investigate all different tree topologies. However, as with
ME, distance methods that are based on the evaluation of an explicit criterion, such
as goodness of fit between observed and tree distances, suffer from the explosive
increase in the number of different tree topologies as more OTUs are examined.
Therefore, heuristic approaches, such as stepwise addition of sequences and local
and global rearrangements, must be applied when trees are constructed on the
basis of ten or more sequences (e.g. Felsenstein, 1993).

5.3 Evaluating the reliability of inferred trees

The two techniques used most often to evaluate the reliability of the inferred tree
or, more precisely, the reliability of specific clades in the tree are bootstrap analysis
(Box 5.3) and jackknifing (see Section 5.3.2).
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5.3.1 Bootstrap analysis

Bootstrap analysis is a widely used sampling technique for estimating the statistical
error in situations in which the underlying sampling distribution is either unknown
or difficult to derive analytically (Efron & Gong, 1983). The bootstrap method offers
a useful way to approximate the underlying distribution by resampling from the
original data set. Felsenstein (1985) first applied this technique to the estimation
of confidence intervals for phylogenies inferred from sequence data. First, the
sequence data are bootstrapped, which means that a new alignment is obtained
from the original by randomly choosing columns from it with replacements. Each
column in the alignment can be selected more than once or not at all until a
new set of sequences, a bootstrap replicate, the same length as the original one
has been constructed. Therefore, in this resampling process, some characters will
not be included at all in a given bootstrap replicate and others will be included
once, twice, or more. Second, for each reproduced (i.e. artificial) data set, a tree is
constructed, and the proportion of each clade among all the bootstrap replicates
is computed. This proportion is taken as the statistical confidence supporting the
maonophyly of the subset.

Two approaches can be used to show bootstrap values on phylogenetic trees. The
first summarizes the results of bootstrapping in a majority-rule consensus tree (see
Box 5.3, Option 1), as done, for example, in the PHYLP software package (Felsen-
stein, 1993). The second approach superimposes the bootstrap values on the tree
obtained from the original sequence alignment (see Box 5.3, Option 2). In this case,
all bootstrap trees are compared with the tree based on the original alignment and
the number of times a cluster (as defined in the original tree) is also found in the
bootstrap trees is recorded. Although in terms of general statistics the theoretical
foundation of the bootstrap has been well established, the statistical properties of
the bootstrap estimation applied to sequence data and evolutionary relationships
are less well understood; several studies have reported on this problem (Zharkikh &
Li, 1992a, b; Felsenstein & Kishino, 1993; Hillis & Bull, 1993). Bootstrapping itself
is a neutral process that only reflects the phylogenetic signal (or noise) in the
data as detected by the tree-construction method used. If the tree-construction
method makes a bad estimate of the phylogeny due to systematic errors (caused
by incorrect assumptions in the tree-construction method), or if the sequence
data are not representative of the underlying distribution, the resulting confidence
intervals obtained by the bootstrap are not meaningtul. Furthermore, if the
original sequence data are biased, the bootstrap estimates will be too. For example,
if two sequences are clustered together because they both share an unusually high
GC content, their artificial clustering will be supported by bootstrap analysis at
a high confidence level. Another example is the artificial grouping of sequences
with an increased evolutionary rate. Due to the systematic underestimation of
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Box 5.3 Bootstrap Analysis (Felsenstein, 1985)
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the genetic distances when applying an unrealistically simple substitution model,
distant species either will be clustered together or drawn toward the root of the
tree. When the bootstrap trees are inferred on the basis of the same incorrect
evolutionary model, the early divergence of long branches or the artificial clustering
of long branches (the so-called long-branch attraction) will be supported at a
high bootstrap level. Therefore, when there is evidence of these types of artifacts,
bootstrap results should be interpreted with caution.

In conclusion, bootstrap analysis is a simple and effective technique to test the
relative stability of groups within a phylogenetic tree. The major advantage of the
bootstrap technique is that it can be applied to basically all tree-construction
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methods, although it must be remembered that applying the bootstrap method
multiplies the computer time needed by the number of bootstrap samples
requested. Between 200 and 2000 resamplings are usually recommended (Hedges,
1992; Zharkikh & Li, 1992a). Overall, under normal circumstances, considerable
confidence can be given to branches or groups supported by more than 70% or
75%; conversely, branches supported by less than 70% should be treated with cau-
tion (Zharkikh & Li, 1992a; see also Van de Peer et al., 2000b for a discussion about
the effect of species sampling on bootstrap values).

5.3.2 Jackknifing

An alternative resampling technique often used to evaluate the reliability of spe-
cific clades in the tree is the so-called delete-half jackknifing or jackknife. Jack-
knife randomly purges half of the sites from the original sequences so that the
new sequences will be half as long as the original. This resampling procedure
typically will be repeated many times to generate numerous new samples. Each
new sample (i.e. new set of sequences) — no matter whether from bootstrapping or
jackknifing — will then be subjected to regular phylogenetic reconstruction. The
frequencies of subtrees are counted from reconstructed trees. If a subtree appears
in all reconstructed trees, then the jackknifing value is 100%; that is, the strongest
possible support for the subtree. As for bootstrapping, branches supported by a
jackknifing value less than 70% should be treated with caution.

5.4 Conclusions

Pairwise distance methods are tree-construction methods that proceed in two steps.
First, for all pairs of sequences, the genetic distance is estimated (Swofford et al.,
1996) from the observed sequence dissimilarity (p-distance) by applying a cor-
rection for multiple substitutions. The genetic distance thus reflects the expected
mean number of changes per site that have occurred, since two sequences diverged
from their common ancestor. Second, a phylogenetic tree is constructed by con-
sidering the relationship between these distance values. Because distance methods
strongly reduce the phylogenetic information of the sequences (to basically one
value per sequence pair), they are often regarded as inferior to character-based
methods (see Chapters 6, 7 and 8). However, as shown in many studies, this is not
necessarily so, provided that the genetic distances were estimated accurately (see
Chapter 10). Moreover, contrary to maximum parsimony, distance methods have
the advantage — which they share with maximum-likelihood methods — that an
appropriate substitution model can be applied to correct for multiple mutations.
Popular distance methods such as the NJ and the Fitch and Margoliash methods
have long proven to be quite efficient in finding the “true” tree topologies or those
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that are close (5aitou & Imanishi, 1989; Huelsenbeck & Hillis, 1993; Charleston
et al, 1994; Kuhner & Felsenstein, 1994; Nei et al,, 1998). NJ has the advantage of
being very fast, which allows the construction of large trees including hundreds
of sequences; this significant difference in speed of execution compared to other
distance methods has undoubtedly accounted for the popularity of the method
{ Kuhner & Felsenstein, 1994; Van de Peer & De Wachter, 1994).

Distance methods are implemented in many different software packages, includ-
ing PHYLIP {Felsenstein, 1993), MeGA4 (Kumar et al., 1993), TREECON (Van de Peer
& Dewachter, 1994}, Paup* (Swofford, 2002), DAMBE (Xia, 2000), and many more.



