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http://evolution.genetics.washington.edu/phylip/software.html

Collection of 392 phylogeny software-packages.
Maintained by Joe Felsenstein who is the author of the first package, PHYLIP, in 1970´s
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NUMBER OF POSSIBLE TOPOLOGIES
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MAXIMUM  PARSIMONY IN PHYLOGENY INFERENCE

Parsimony, Occams razor, a philosophical concept.
Monk William of Ockham (1280-1350):
“Entitia non sunt multiplicanda praeter necessitate”,  entities should not be
multiplied more than necessary,
“The best hypothesis is the one requiring the smallest number of assumptions”

The principle of maximum parsimony (MP) in phylogeny inference involves the
identification of  a  tree topology that requires the smallest  number of  changes to
explain the observed differences. The shortest pathway  leading  to these is chosen
as the best tree.

Two subproblems:
Determining the amount of character change, or tree length, required

by any given tree.
Searching over all possible tree topologies to find the tree that minimize

this length.



Phylogeny methods - Parsimony, ML, Bayesian / Biometry and bioinformatics II 2013 / SVarvio 5

INFORMATIVE AND UNINFORMATIVE SITES FOR PARSIMONY ANALYSIS

A nucleotide site is
informative only if it favors a
subset of trees over the other
possible trees. Invariant (1, 6,
8 in the example) and
uninformative sites are not
considered.

Variable sites:
Site 2  is  uninformative because
all three possible  trees require
1 evolutionary change, G ->A.
Site 3 is  uninformative because
all trees require 2  changes.
Site 4  is uninformative because
all trees require 3 changes.
Site 5  is informative because
tree I requires one change, trees
II and III require two changes
Site 7  is informative, like site 5
Site 9  is informative  because
tree II requires one change,
trees I and III require two.

An example, four OTUs (operational taxonomic units), nine
sites

1  2  3  4  5  6  7  8  9
OTU a     A A G  A  G  T  T C  A
OTU b     A  G  C  C G  T  T C  T
OTU c     A  G  A  T  A  T  C  C A
OTU d     A  G  A  G  A  T  C  C T

Four OTUs can form three possible unrooted trees, I, II, III

tree I            tree II          tree III
((a,b),(c,d))   ((a,c),(b,d))   ((a,d), (b,c)) NEWICK-formats

site 3

site 5

site 9
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A site is informative only when there are at least two different kinds of nucleotides at
the site (among the OTUs), each of which is represented in at least two OTUs.

Identification of all informative sites and for  each possible tree the minimum
number of substitutions at each informative site is calculated:

In the example for sites 5, 7 and 9:
tree I requires   1, 1, and 2 changes
tree II requires  2, 2, and 1 changes
tree III requires 2, 2, and 2 changes.

Summing the number of  changes over all the informative sites for each possible
tree and choosing the tree associated with the smallest number of changes: Tree I is
chosen because it requires 4  changes, II and III require 5 and 6 changes.

In the case of 4 OTUs an informative site can favor only one of the three possible
alternative trees. For example, site 5 favors tree I over trees II and III, and is thus said
to support tree I. The tree supported by the largest number of informative sites
is the most parsimonious tree. In the cases where more than 4 OTUs are involved,
an informative site may favor more than one tree and the maximum parsimony tree
may not necessarily be the one supported by the largest number of informative sites.

INFERRING THE MAXIMUM PARSIMONY TREE
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The rule:
The set at an interior node is the intersection of its two immediately

descendant sets if the intersection is not empty.
Otherwise it is the union of the descendant sets.
For every occasion that a union is required to form the nodal set, a

nucleotide substitution at this position must have occurred at some point
during the evolution for this position. Thus, counting the number of unions
gives the minimum number of substitutions required to account for
descendant nucleotides from a common ancestor, given the phylogeny
assumed at the outset.

The example next page (taken from textbook W-H Li, Molecular evolution, 1997)
considers the case of six OTUs, and one particular site, at which the nucleotides are

....site......
OTU 1     C
OTU 2     T
OTU 3     G
OTU 4     T
OTU 5     A
OTU 6     A

The six OTU´s have five (unknown, to be inferred) ancestors: 7, 8, 9, 10, 11.

FITCH´S  PARSIMONY
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FITCH´S PARSIMONY, EXAMPLE

AT

T

AGT

CT          GT

C     T       G    T        A        A

11

10

9

7 8

1 2 3 4 5 6

NEWICK-format, the commonly agreed format for phylogeny topologies
(not only parsimony), of the tree is ( ( ( 1,2 ) ( ( 3,4 ) 5 ) ) 6 )

One possible tree topology for the example site (previous page).
The nucleotide at nodes 7, 8 and 9 cannot be determined uniquely
under the parsimony rule. At node 10 T is chosen as it is shared by
the sets at the two descendant nodes, 7 and 9. The nucleotide at
node 11 cannot be determined uniquely. Parsimony requires it to
be either A or T.

At nodes 7, 8 and 10 nucleotide A  could be included as a
possible ancestral nucleotide because A is a possible common
ancestral nucleotide (node 11) of all the six OTUs.

Consider other possible topologies for the example site. For example:

( ( ( 2,4 ) 1 ) ( 3 ( 5,6 ) ) )

Inferred nucleotides at nodes 7, 8, 9, 10 and 11 ?
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In the example tree (previous page), the nucleotide at node 10 is the
intersection of the sets at nodes 7 and 9. The set at node 9 is the union of the
sets at nodes 8 and 5.

Counting the number of unions gives the minimum number of substitutions
required to account for descendant nucleotides from a common ancestor, given
the phylogeny assumed at the outset. In the example this number is 4.

There are many other alternative trees, each of which requires 3
substitutions. Thus, unlike the case of four OTUs, an informative site
may favor many alternative trees.

FITCH´S PARSIMONY
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Inferring optimal trees under the parsimony criterion involves
(1) determining the amount of character change, or tree length, required by

any given tree,  and
(2) searching over all possible tree topologies for the trees that minimize

this length.

For n OTUs, an unrooted binary tree (a fully bifurcating tree) contains n terminal nodes,
n – 2 internal nodes, and 2n – 3 branches (edges) that join pairs of nodes.

The length of a particular tree topology (one tree chosen from the space of all possible
trees) is the sum of sites in the sequence,  a single site having a length on the basis of
the amount of character change. N is the number of sites (characters) and lj is the
amount of character change implied by a most parsimonious reconstruction that assigns
a character state xij to each node i for each site j. For terminal nodes the character state
assignment is fixed by the input data.

In Fitch parsimony the cost associated with the change from state x to state y is simply
1 if x and y are different,  0 is they are identical.

THE LENGTH OF A  GIVEN TREE
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A commonly used cost scheme is to assign a greater cost to transversions than to
transitions. This means that the latter are accorded less weight.

The cost scheme is represented as a cost matrix, or step matrix, that assigns a cost for
the change between each pair of character states. The cost matrix is usually symmetric
(cAG = cGA ) with the consequence that the length of the tree is the same regardless of the
position of the root. If the cost matrix contains elements for which cxy cyx , then different
rootings of the tree may imply different lengths, and the search among trees must be done
over rooted trees rather than unrooted trees.

Next example (taken from Lemey et al., The phylogenetic handbook, 2009), calculation
of tree length using  “brute-force”  approach of evaluating all possible character-state
reconstructions. Four OTUs, W, X, Y and Z,

site
j The tree ( ( W,Y ) ,( X,Z ) ) is shown (next page).

W...ACAGGAT....
X...ACACGCT....
Y...GTAAGGT....
Z...GCACGAC....

THE LENGTH OF A TREE
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INFERRING THE MAXIMUM PARSIMONY TREE

Two cost schemes, equal and
transversions 4x weighted.

With equal costs, the minimum
length is two steps and this length is
achievable in three different ways,
internal nodes assignment  A-C, C-C
and G-C. If a similar analysis for the
other two possible trees, ((W,X),(Y,Z))
and ((W,Z),(Y,X)) is conducted, they
are also found to have lengths of two
steps. Thus, this character (state) does
not discriminate among three tree
topologies and is parsimony-
uninformative under this cost scheme.

With 4:1 transversion:transition
weighting the minimum length is five
steps, achieved by two reconstructions,
internal node assignments A-C  and
G-C. Similar evaluation of the other
two trees finds a minimum of  eight
steps on both trees (i.e. two
transversions are required rather than
one transition plus one transversion).
The character thus becomes
informative as some trees have lower
lengths than others.
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For symmetric cost matrixes an unrooted tree can be rooted arbitrarily to determine the minimum tree length. Then, for
each node i , a conditional-length vector Sij ,  containing the minimum possible length above i is computed,  given each
of the possible state assignments to this node for character j.

Thus, sik is the minimum possible length of the subtree descending from node i if it is assigned state k.
For the tip sequences, this length is initialized to 0 for the state(s) actually observed in the data, or to infinity otherwise.
The algorithm proceeds by working from the tips toward the root, filling in the vector at each node based on the values

assigned to the node´s children (i.e. immediate descendants).

SANKOFF´s ALGORITHM FOR CALCULATION OF MINIMUM TREE LENGTH

Node 1

For each element k of this vector, consider the costs associated with each of the
four possible assignments to each of the child nodes W and Y, and the cost needed
to reach these states from state k, which is obtained from the cost matrix (4:1
transversion:transition is assumed here).

Calculation is trivial for nodes ancestral to two terminal nodes because only one
state needs to be considered for each child. Thus, if state A is assigned to node 1,
the minimum length of the subtree above node 1, given this assignment, is the cost of
a change from A to G in the left branch, plus the cost of a (non-) change from A to A in
the right branch: s1A = cAG + cAA = 1 + 0 = 1.  Similarly, s1C is the sum of cCG (left
branch) and cCA (right branch) = 8.

Continuing like this, the configuration for the subtree of node 1 is obtained.
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SANKOFF´s ALGORITHM FOR CALCULATION OF MINIMUM TREE LENGTH

Nodes 2 and 3

Node 2 analogously (see node 1, previous page), but calculation for the root
node 3 is a bit more complicated:

For each state k at this node,  each of the four state assignments to each of
the child nodes 1 and 2 must be considered.

For example, when calculating the length, conditional on the assignment of
state A to node 3, for the left branch we consider in turn all four of the
assignments to node 1.

If node 1 is assigned state A as well, the length would be the
sum of 1 (for the length above node 1) plus 0 (for the non-change from state A
to state A).

If instead state C is chosen for node 1, the length contributed by the left
branch would be 8 (for the length above node 1) plus 4 (for the change from A
to C).

The same procedure is used to determine the conditional lengths for the
right branch.

By summing up these two values for each state k, the entire conditional-
length vector for node 3 is obtained.

Since the root of the tree is now considered, the conditional-length vector s3
provides the minimum possible lengths for the full tree, given each of the four
possible state assignments to the root. The minimum of these values is the
tree that is seeked. This length is 5 (cf. above the example using brute-
force enumeration).
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Sankoff´s algorithm provides a means of calculating the length required by any
character on any tree under any cost scheme. The length of a given tree is obtained by
repeating the procedure for each character and summing up all characters. In principle,
the most parsimonious tree is found by generating and evaluating all possible trees.
However, this exhaustive-search strategy is feasible only for a relatively small
number of OTUs (in practice, 11 is the maximum number for most (?) phylogeny
programs.

Below (next page, taken from Lemey et al., The phylogenetic handbook, 2009) one
procedure:  The algorithm recursively adds the tth OTU in a stepwise fashion to all
possible trees containing the first t – 1 OTUs until all n OTUs have been joined. For
rooted trees the algorithm is modified by including one additional artificial OTU that
locates the root of each tree. In this case,  the first three trees generated represent each
of the three possible rootings of an unrooted three-OTU tree, and the algorithm
proceeds as in the unrooted case. Thus, the number of rooted trees for n OTUs is equal
to the number of unrooted trees for n + 1 OTUs.

Six OTUs (A,B,C,D,E,F), start with A,B,C, the fourth, D, connected to each of the three
branches, fifth, E, connected to each three trees all 15 possible trees generated....
all 105 possible trees generated and their lengths evaluated.

SANKOFF´s ALGORITHM  - GENERATION OF ALL POSSIBLE TREES
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ROLE OF MODELS IN PHYLOGENY RECONSTRUCTIONS
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ROLE OF MODELS IN PHYLOGENY RECONSTRUCTIONS



MODELLING SEQUENCE EVOLUTION
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Sequence differences that we observe now (among existing species or other items
which are compared) are products of past mutation events, substitutions.

Understanding the substitution process needs modelling.

Historically, modelling started by the concept molecular clock.

Parametrization: one parameter, Jukes-Cantor model more realistic models

The neutral theory of molecular evolution

Appendix: Markov models in general  (not within the scope of this course)
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CURRENT  DIFFERENCES ARE PRODUCTS OF PAST SUBSTITUTION EVENTS

Two DNA sequences, 1 and 2,
that have descended from an
ancestral sequence and
accumulated point mutations since
their divergence from each other.

Note that although 12 mutations
have taken place, there are only 3
detectable differences between 1
and 2.

single substitution

multiple
coincidental

parallel
convergent

back substitution

ancestral sequence

sequence 1                          sequence 2
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HISTORY: JUKES TELLS HOW THE IDEA AROSE

http://www.garfield.library.upenn.edu/classics1990/A1990CZ67100002.pdf



To study the dynamics of nucleotide substitution, assumptions on the probabilities of
substitutions of one nucleotide by another are needed.

Assumption: all nucleotide substitutions occur with equal probabilites, 

The rate of substitution for each nucleotide is 3 per unit time

A   T    C    G
A     
T          
C    
G    

At time 0:  Assumption that  at a certain nucleotide site there is A, PA(0) = 1
Question: probability that this site is occupied by A at time t , PA(t) ?
At time 1, probability of still having A at this site is

PA(1) =  1  - 3 (1)

3 is the probability of A changing to T, C, or G
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JUKESJUKES--CANTOR MODEL, ONE PARAMETERCANTOR MODEL, ONE PARAMETER



The probability of the site having A at time 2 is

PA(2) = (1 - 3 )PA(1) + [1 – PA(1)] (2)

This includes two possible courses of events:

t = 0                                    t = 1                                     t = 2
A                                         A A

no substitution                    no substitution

A                                     T or C or G                                 A
substitution                            substitution

The following recurrence equation holds for any t

PA(t+1) = (1 - 3 )PA(t) + [1 – PA(t) ]                                 (3)

Note that this holds also for t = 0, because PA(0) = 1 and thus

PA(0+1) =   (1  – 3 ) PA(0) + [1 – PA(0) ] = 1 - 3
which is identical with equation (1).
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JUKESJUKES--CANTOR MODEL, ONE PARAMETERCANTOR MODEL, ONE PARAMETER



The amount of change in PA(t) per unit time, rewriting equation (3):

PA(t) = PA(t+1) – PA(t) =  - 3 PA(t) + [1 – PA(t) ]  =  - 4 PA(t) + (4)

Approximating the previous discrete-time model by a continuous-time model, by
regarding PA(t) as the rate of change at time t. With this approximation equation (4) is
rewritten as

dPA(t) / dt =  - 4 PA(t) +                                               (5)

The solution of this first-order linear differential equation is

PA(t) = ¼  +  (PA(0) – ¼ )e -4 t (6)

The starting condition was A at the given site, P A(0) = 1, consequently

PA(t) = ¼  + ¾ e -4 t (7)

Equation (6) holds regardless of the initial conditions, for example if the initial
nucleotide is not A, then PA(0) = 0, and the probability of having A at time t

PA(t) = ¼  + ¼ e -4 t (8)
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JUKESJUKES--CANTOR MODEL, ONE PARAMETERCANTOR MODEL, ONE PARAMETER



Equations (7) and (8) describe the substitution process. If the initial
nucleotide is A, then PA(t) decreases exponentially from 1 to ¼ . If the initial
nucleotide is not A, then PA(t) will  increase monotonically from 0 to ¼ .

Under this simple model, after reaching  equilibrium, PA(t)=PT(t)=PC(t)=PG(t)
for all subsequent times.

Equation (7) can be rewritten in a more explicit form to take into account
that the initial nucleotide is A and the nucleotide at time t is also A

PAA(t) = ¼  + ¾ e -4 t (9)

If the initial nucleotide is G instead of A, from equation (8)

PGA(t) = ¼  + ¼ e -4 t (10)

Since all the nucleotides are equivalent under the Jukes-Cantor model,
the general probability, Pij(t) , that a nucleotide will become j at time t,
given that it was i at time 0, equations (9) and (10) give the general
probabilities Pii(t) and  Pij(t), where  j.

Pii(t) = ¼  + ¾ e -4 t and Pij(t) = ¼  + ¼ e -4 t (11)
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JUKESJUKES--CANTOR MODEL, ONE PARAMETERCANTOR MODEL, ONE PARAMETER



We assume that all sites in sequence evolve at the same rate and follow the same
substitution scheme. The number of sites compared between two sequences is
denoted by L.

Consider  the probability that a nucleotide at a given site at time t is the same in
both sequences. Suppose that the nucleotide at a given site was A at time point 0. At
time t, the probability that a descendant sequence will have A at this site is PAA(t), and
consequently the probability that two descendant sequences have A at this site is
P2

AA(t). Similarly, the probabilities that both sequences have T, C or G at this site are
P2

AT(t), P2
AC(t), and P2

AG(t)

The probability that the nucleotide at a given site at time t is the same in both
sequences is

I(t) = P2
AA(t) + P2

AT(t) + P2
AC(t) + P2

AG(t) (12)
’

From equations (11) we obtain

I(t) = ¼ + ¾ e -8 t (13)
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JUKESJUKES--CANTOR MODELCANTOR MODEL --> NUCLEOTIDE DIVERGENCE BETWEEN TWO SEQUENCES> NUCLEOTIDE DIVERGENCE BETWEEN TWO SEQUENCES



Equation (13) also holds for T, C or G. Therefore, regardless of the initial nucleotide
at a given site, I(t) represents the proportion of identical nucleotides between two
sequences that diverged t time units ago. The probability that the two sequences are
different at a site at time t is p = 1 - I(t).  Thus

p = ¾ (1 - e -8 t)      or      8 t = ln(1 – (4/3) p)                               (14)

The time of divergence between two sequences is usually not known, and thus
estimation of is not possible. Instead, it possible to calculate K, which is the
number of substitutions per site since the time of divergence between the two
sequences.  In the case of the one-parameter model, K = 2(3 t), where 3 t is the
number of substitutions per site in a single lineage

K = 6 t = - ¾ ln(1 - (4/3) p)                                                     (15)

where p is the observed proportion of different nucleotides between the two
sequences.

An example. Page 3 (book chapter page 143) in Phylogeny methods based on
distance matrices (see course webpage, week 1) shows how Jukes-Cantor model
serves like a correction to sequence diverge calculation.
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JUKESJUKES--CANTOR MODELCANTOR MODEL --> NUCLEOTIDE DIVERGENCE BETWEEN TWO SEQUENCES> NUCLEOTIDE DIVERGENCE BETWEEN TWO SEQUENCES



The Jukes-Cantor –model was introduced in 1969 when virtually nothing was known
about nucleotide substitution

In 1980 Motoo Kimura proposed different parameters for transitions and
transversions.

Transition is a nucleotide change between purines,  A  and G, and pyrimidines,

T and C.  Transversion is a purine – pyrimidine change.

The rate of transition change is  and transversion change is  per unit time

A   T    C   G

A            

T                

C                

G          
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TwoTwo parametersparameters,, KimuraKimura´́ss modelmodel

(In Assignment 2  one of the exercises is to derive this model in a similar way that was used
for one-parameter model. You have to consider four courses of events: no substitution,
transition, two different transversions. You can also derive the model in some other way, if
you like.)
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HISTORICAL  LOOK AT NUCLEOTIDE CHANGE MODELLING

Since 1980´s it has been known that misincorporation errors (mutations) during
DNA replication or repair are facilitated if a base is replaced by similar one and thus
transitions (purine replaced by a purine, or pyrimidine replaced by pyrimidine) occur
more frequently than transversions (purine replaced by a pyrimidine or vv).
Differences in mutation rate tend to decrease TA and CG dimers and to produce an
excess of CT and TG dimers, and many other kinds of biased processes (cf. the
constancy in the Jukes-Cantor model).

The development of models of sequence evolution is an active field and there is a
large number of models.

Two main approaches to building models of sequence evolution: An empirical one,
using properties calculated through comparisons of large numbers of observed
sequences (for example, counting apparent replacements between many closely
related sequences). Empirical models result in fixed parameter values which are
estimated only once and then assumed to be applicable to other datasets (=> easy to
use computationally). The alternative approach is to build models parametrically on
the basis of chemical or biological properties of DNA and amino acids. For example,
incorporating a parameter to describe the relative frequency of transition to and
transversion substitutions in the sequences studied. Both methods result in Markov
process models (see the Appendix).
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FLOW-DIAGRAM OF THE MOST WIDELY USED SUBSTITUTION MODELS

Starting with the simple Jukes-Cantor model, more general models are obtained by
allowing unequal nucleotide frequencies and/or more than one substitution parameter.
The most general model of this type is the GTR model that allows unequal base
frequencies and prescribes a different substitution parameter for each of the six pairs
of different nucleotides.



An important aspect in substitution process modelling is the consideration of
heterogeneity of evolutionary rates among sites. The biological basis of
heterogeneous mutation rate among sites may reflect the influence of the nearest
neighbors on mutation rate. Stacking energies along the molecule, helix
configuration (A, B, Z-DNA, triple helix), supercoiling, and DNA intrinsic curvature
(that is sequence dependent) change the solvent accessibility and thus base
reactivity. The fixation of any mutation depends on DNA and protein
structure/function selection pressures (and on stochastic processes, of course).
Protein coding and noncoding DNA regions show remarkably different mutation
rates; moreover, each codon position is subject to different selection pressures.

The incorporation of heterogeneity of evolutionary rates among sites has led to
a new set of models that generally provides a better fit to observed data. Some
authors have considered models in which a fraction of sites change at one rate,
whereas the other sites are invariable. More popular and successful have been
models based on a continuous distribution of rates. Modelling site rates using a
Gamma distribution is a widely used approach. A continuous distribution in which
every site may have a different rate seems to be the most biologically plausible
model. It has been shown, however, that the discrete Gamma model, with as
few as four categories of evolutionary rates chosen to approximate a Gamma
distribution, performs very well. It is also very practical computationally.
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RATE HETEROGENEITY IN SUBSTITUTION PROCESS



When using Gamma distribution, it is assumed  that the rate of substitution for
each site is drawn from this distribution with shape parameter .

If  is <1, the distribution implies that there is a relatively
large amount of rate variation, with many sites evolving very
slowly but some sites evolving at a high rate.

For values of >1, the shape of the distribution changes
qualitatively, with less variation and most sites having roughly
similar rates.

It is known that the range of distributional shapes available
under the permitted values of 0  is well able to
describe the variation found in DNA sequences.

Next page gives an example of comparisons of  substitution models, including
the gamma assumption. Maximum likelihood phylogeny inference (see below) is
inferred, using different model assumptions for a given sequence dataset.
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RATE HETEROGENEITY IN THE SUBSTITUTION PROCESS
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.RELATIONSHIPS  AMONG SUBSTITUTION MODELS IN A PRACTICAL EXAMPLE

The sequence studied is  a part of mitochondrial genome.
Mitochondrial sequences are known to have highly biased transitions
vs. transversions.

The models JC , FEL,  K2P,  REV, REV +   (the inferred shape parameter
value is =0.28 ) are presented in a flowchart showing relationships
between them. For each model,  the matrix of rates of substitutions
between nucleotides  is represented by a bubble plot where the area of
each bubble indicates the corresponding rate. The models become
more advanced moving down the figure, as illustrated in the bubble
plots by their increasing flexibility in estimating relative replacement
rates and as reflected by increasing log-likelihoods.

For the REV+  model  the reverse-J shape of the graph indicates that
the majority of sites have low rates of evolution, with some sites having
high rates of evolution.

Note how the inferred maximum likelihood phylogeny changes
significantly as the models become more advanced.  (compare JC with
K2P); inferred branch lengths also tend to increase (compare REV to
REV+ ). Arrows show where models are nested within each other; that
is, where the first model is a simpler form of the next. For example, the
JC model is nested within the K2P model (it is a special case arising
when  is fixed equal to 1), but the K2P model is not nested with the
FEL model.



.
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MARKOV MODELLING OF NUCLEOTIDE SUBSTITUTIONS                           APPENDIXMARKOV MODELLING OF NUCLEOTIDE SUBSTITUTIONS                           APPENDIX

Consider a stochastic model for DNA or amino acid sequence evolution.

Assume independence of evolution at different sequence sites => sites can be
considered one by one.

At any single site, the model works with probabilities Pij(T) that base i will have
changed to base j after a timeT.

The subscripts i and j take the values 1,...,4 to represent the
nucleotides A, T, C, G for DNA sequences and 1,...,20 for amino
acid sequences.

Given a stochastic variable X(t) describing the evolution through time t of a site
in one sequence, the Markov assumption asserts that

Pij(T Pr[X(s T j|X(s i] is independent of s 0

This means that subsequent to any time s it does not matter how the process
reached state i by time s and the future course of evolution depends only on i.
The process is memoryless.
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MARKOV MODELLING OF NUCLEOTIDE SUBSTITUTIONS                              APPENDIX

The probabilities of transition from one base to another,Pij(T), can be written as a
matrix P(T),

P(T + dT) = P(T)(I + QdT)

dT represents a small time
I is the identity matrix.
The matrix Q is the instantaneous rate matrix and has

off-diagonal entries Qij equal to the rates of replacement
of i by j. The diagonal entries,Qii, are defined by a
requirement that the row sums are all zero.

Solving the equation gives
P(T) = eTQ = I + TQ + (TQ)2/2! + (TQ)3/3! + . . .

Diagonalization (spectral decomposition) of Q: calculating the matrix P(T)
P(T) = U diag {e 1T, . . . , e nT U-1

U contains the eigenvectors of Q, the i are the
eigenvalues of Q and diag{ } denotes the diagonal matrix of the elements.

The components Pij (T) can be written as Pij (T) = k cijke kT where the sum is over k
= 1, .., 4 for DNA sequences, cijk is a function of U and U-1

T and Q are confounded TQ = (T ) ( Q) for any 0 (half the time at twice the rate
has the same result).

Time is not absolute, but scaled to units of expected substitutions per site.

NOTE: transition (probability)
here has nothing to do with the
terminology
transitions vs. transversions
which are for purine-purine and
pyrimidine-pyrimidine vs,
purine-pyrimidine substitutions
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PROPERTIES OF MARKOV MODELS                                                                    APPENDIX

A Markov process can have three important properties:

Homogeneity. The rate matrix is independent of time which means that
patterns of  nucleotide substitution (or amino acid replacement) remain the
same in different parts of the phylogenetic tree. A homogeneous process
has an equilibrium distribution that is also the limiting distribution when time
approaches infinity.

Stationarity means that the process is at that equilibrium, that is,
nucleotide frequencies have remained more or less the same during the
course of evolution.

Reversibility means that i Pij(T j Pji(T) for all i, j, and T where i are
the frequencies of occurrence for each base. A consequence of reversibility
is that the process of sequence evolution is theoretically indistinguishable
from the same process watched in reverse.



Models in widespread use typically assume homogeneity, yet this is rarely
likely to be fully appropriate, for example, because of the dependence of
mutation on local sequence context.

Stationarity is not a consequence of a Markov model but of its application;
this, too, is generally assumed in phylogenetics, although when base
frequencies are quite different in different species this assumption is clearly
violated. Genomes show large differences in base compositions. For
example, the genome of one bacterium is 74% G+C content, whereas the
genome of another is only 25% G C content.

Reversibility, too, is generally assumed, with little justification other than
that numerical calculations are simplified considerably. Assumptions such as
those of homogeneity, stationarity, and reversibility are typical of the
approximations that have to be made to render the wide knowledge of
molecular biology into a mathematically tractable form.
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PROPERTIES OF MARKOV MODELS IN NUCLEOTIDE SUBSTITUTION MODELLING



The Jukes-Cantor model (see above) is defined by Qij  for all i,j 1,...,4; i j,
meaning that each base is substituted by any other at equal rate . A consequence of
this model is that the base frequencies ( i) are all assumed equal to 0.25.

Kimura´s two-parameter model considers the difference in transition and
transversion rates. The instantaneous rate matrix is given in page 9. In this the order
of the bases for columns and rows are A, T, C, G, and the (i,j) entry represents Qij,
the rate (i j) at which a base i is replaced by a base j.

After Kimura, several authors have proposed models with increasing numbers of
parameters. For example,

asymmetry for some reciprocal changes: i j has a different substitution
rate from j I,

with or without reversibility assumption, different kind of biases allowed,
etc.

The most general model has 12 independent parameters.
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MARKOV MODELLING OF SUBSTITUTIONS                                                      APPENDIX
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MAXIMUM  LIKELIHOOD
PHYLOGENY INFERENCE

The statistical framework maximum likelihood, was developed in 1922  by R.A. Fisher.
He showed that ML estimates have a variety of good properties:

consistency (converging to the correct value of the parameter)
efficiency (having the smallest possible variance around the true parameter value.

The concept likelihood refers to a situation in which given some data D, a decision must be
made about an adequate explanation of the data. A specific model and hypothesis are
formulated in which the model as such is generally not in question.

Two uses of likelihood in phylogenetic analysis:

to estimate parameters in the evolutionary model and to test hypotheses
concerning the evolutionary process when the tree topology is known or fixed.

to estimate the tree topology. The log likelihood for each tree is maximized by
estimating branch lengths and other substitution parameters, and the optimized log
likelihood is used as a tree score for comparing different trees.
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THE STATISTICAL CONCEPT LIKELIHOOD

In phylogeny framework, one part of the model is that sequences actually evolve according to
a tree. The possible hypotheses include the different tree topologies, the branch lengths, and
the parameters of the model of sequence evolution.

By assessing values to these elements, it is possible to compute the probability of the data
under these parameters and to make statements about their plausibility.

Some hypotheses produce the data with higher probability than others.

Using the laws of conditional probability (P), and considering two hypotheses, H1 and H2 about
a set of data (D), it can be shown, that

since P (H D) = P (H and D) / P (D) =  P (D H) P(H) / P(D),

then     P (H1 D) / P (H2 D) =    P (D H1) P (H1)  /  P(D H2) P(H2) (1)

This expresses the odds ratio in favor of hypothesis 1 over hypothesis 2 as a product of two
terms. The first is the ratio of the probabilities of the data given the two hypothesis. The second
is the ratio of the prior probabilities of the two hypotheses (the odds ratio favoring H1 over H2)
before looking at the data.

Considering the odds favoring H1 over H2, the equation shows how to take into account the
evidence provided by the data, and come up with a valid posterior odds ratio.

The formula is the odds ratio form of Bayes´ theorem.

The quantity P (D H) is called the likelihood of the hypothesis H . Note that this does not mean
that it is the probability of the hypothesis, that would be P(H D).

It is the probability of data, given the hypothesis.
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LIKELIHOOD OF A TREE

If there are independent observations,  then

P (D Hi) = P(D (1) Hi) x P(D (2) Hi )x  …….x P(D (n) Hi) (2)

It follows that

P(D H1) / P(D H2) = (  P(D (i) H1/P(D (i) H2))(P(H1) / P(H2)) (3)

From equations (1) and (3) it can be seen that if there is large amount of data, the right
side of the equation will be dominated by its first term which is the likelihood ratio of the two
hypotheses.

Consider a set of aligned DNA sequences with n sites and one possible phylogeny with
branch lengths.

An evolutionary model that allows computing probabilities of changes of states along this
tree,  the transition probabilities, Pij(t), the probability that state j will exist at the end of a
branch of length t, if the state at the start of the branch is i. Note that t measures branch
length, not time.

Assumptions:   (1) Evolution in different sites (on a given tree) is independent.

(2) Evolution in different lineages is independent.

The first assumption allows taking the likelihood and decomposing it into a product, one
term for each site:

L = P(D T) =  P(D(i) T) (4)

where D(i) is the data (nucleotide) at the i th site and multiplication is over n sites.
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LIKELIHOOD  FOR  ONE  NUCLEOTIDE  SITE

(A)  Example of four OTUs, aligned  sequences, 9
out of n sites are shown.

(B)  One of three possible trees for the four OTUs
with ancestral states (HTUs,  hypothetical
taxonomic units).

(C) The likelihood of one site, site 5, equals the
sums of the 16 probabilities (P) of every
possible reconstruction of ancestral states at
nodes 5 and 6. Some of the possibilities are,
of course, less plausible than others, but
each has a non-zero probability of generating
any pattern of observed nucleotides at the
four tips of the tree.  The probabilities are
defined by  a model of substitution.

(D) The likelihood of a tree in (B) is the product of
the individual likelihoods for all n sites.

(E) The likelihood is usually evaluated by
summing up logarithms of the likelihoods at
each site => log likelihood of the tree.



The likelihood of the tree for the site (A,C,C,C,G)
is the sum, over all possible nucleotides that may have existed
at the interior nodes of the tree, of the probabilities of each scenario
of events:

P(D(i) T) =  P(A,C,C,C,G, x,y,z,w T) (5)
x  y z w

Each summation runs over all four nucleotides.

Assumtions (1) and (2) allow decomposing the probability in
equation (5) into a product of terms:

P(A,C,C,C,G,x,y,z,w T) =
P(x)    P(y x,t6 )    P(A y,t1)   P(C y,t2)

P(z x,t8)    P(C z,t3) (6)
P(w z,t7)  P(C w,t4)   P(G w,t5)

The probability of  x  can be regarded as the probability that - at a
random point on an evolving lineage - nucleotide x (where x=A,C,G
or T) would be seen.

C

t 1 t 2 t 4 t 5

t 3

t 6 t 7

t 8
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LIKELIHOOD OF A TREE WITH BRANCH LENGTHS, ONE SITE

y

w

z

x
A C C GC

5 OTUs, one site as an example



Assuming that evolution has been proceeding for a very long time according to the
particular model of nucleotide substitution that is used, it is reasonable to take P(x) to
be the equilibrium probability of nucleotide x under that model. The other probabilities
are derived from the model of nucleotide substitution. The change in each lineage is
independent  of that in all other lineages, once the nucleotides at the start of each
lineage have been specified.

Computing expression (6)
The individual probabilities are not problematic, they are the probabilities which are
specified in a nucleotide substitution model (for example Jukes-Cantor, Kimura 2-
parameter, or a more sophisticated model). There are, however, many terms. Each site
requires summing 44 = 256 terms. The number of terms rises exponentially with the
number of OTUs:

On a tree with n OTUs, there are n-1 interior nodes, and each can have
one of 4 states.

So,  4n-1 terms are needed.
n = 10  => 262 144 states
n = 20  => 274 877 906 944 states for one site
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LIKELIHOOD OF A TREE WITH BRANCH LENGTHS, ONE SITE



Pruning is a special case of the peeling
algorithm, which was introduced in 1970´s for
rapidly computing likelihoods on pedigrees in
human genetics. Peeling, in turn, is a special
case of Horner´s algorithm, which is for the
efficient evaluation of polynomials in monomial
form (Isaac Newton used this).

The flow of computation in expression (8) is
from the inside of the innermost parentheses
outwards. This suggests a flow of information
down the tree, and an algorithm (to compute
the equation) that works in this way is as
follows: The probability of everything that is
observed from node k on the tree on up, at
site i , conditional on node k having state s. In
equation (8) the term P(C w,t4)P(G w,t5) is
one of these quantities:  the probability of
everything seen at or above that node (the
node that lies below the rightmost two tips),
given that the node has nucleotide w.  There
will be four such quantities, corresponding two
different values of w. The key to the pruning
algorithm is that, once these four numbers are
computed, they need not continually be
recomputed.

The pruning alqorithm for economizing the computation
was introduced by Joe Felsenstein in 1973.  The method
may be derived by trying to move summation signs in
equation (6) as far right as possible and enclose them in
parentheses where possible. Equation (6) can be rewritten

P (D(i) T) =  P (x) P (y x, t6) P(A y, t1)
x   y   w  z

P (C y, t2 ) (7)
P (z x, t8 )P(C z, t3 )
P (w z, t7 )P(C w, t4 P(G w,t5)

and moving summation signs as far right as possible

P (D(i) T) = (8)
P(x)(  P(y x, t6)P (A y, t1 ) P (C y, t2 ) )

x y

P(z x,t8)P(C z,t3)( P(w z,t7)P(C w,t4)P(G w,t5)))
z w

Note that the pattern of parentheses and tips in
this expression is (A,C)(C,(C,G)), as is in the tree.
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THE PRUNING ALGORITHM



The algorithm is expressed as a recursion that computes the L(i) (s)
at each node on the tree from the same quantities in the immediate descendant nodes.

Suppose that node k has immediate descendants l and m, which are at the top ends of
branches of length tl and tm.  Then

Lk
(i) (s) = (  P (x s,tl ) Ll

(i) (x) ) (  P (y s,tm) Lm
(i) (y) ) (9)

x y

This is the probability of everything at or above node k, given that node k has state s, is
the product of the events taking place on both descendant lineages.

In the left lineage, it sums over all of the states to which s could have changed, and for
each of those computes the probability of changing to that state, times the probability of
everything at or above that node (node l ), given that the state has changed to state x.
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THE PRUNING ALGORITHM



To start the process the values of the L(i) at the tips of the tree are needed.
If state A is found at a tip, the values of the L(i) at the tip will be

(L(i) (A), L(i) (C), L(i) (G), L(i) (T) ) =  (1, 0, 0, 0) (10)
whichever nucleotide is seen at the tip has the corresponding value of
L(i) set to 1, and all others are 0.

The algorithm is applied starting at the node that has all of its immediate descendants
being tips (always at least one such node exists). Then it is applied successively to nodes
further down the tree, not applying it to any node until all of its descendants have been
processed. The result is the L(0)

(i) for the bottom-most node of the tree.

Evaluation of the likelihood of this site is completed by making a weighted average of
these over all four nucleotides, weighted by their prior probabilities under the probabilistic
model

L(i) = x L(0)
(i) (x) (11)

Once the likelihood for each site is computed, the overall likelihood of the tree is the
product of these, as noted in equation (4).
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THE PRUNING ALGORITHM



The pruning algorithm  for updating the likelihoods along a tree simplifies the task of finding the ML
tree. This is, however, only one part of the total task. There is a space of trees with branch lengths.
The optimum branch lengths for each given tree topology need to be found, and also the tree space
must be searched for tree topologies for the topology that has a set of branch lengths that gives it the
highest likelihood. No easy analytical solutions to the problem of finding the optimal branch lengths
for a given tree topology exist and there may be multiple local maxima for likelihoods.

The famous program package for ML-phylogeny inference is Joe Felsenstein´s PHYLIP  (includes
also distance matrix and parsimony methods)
http://evolution.genetics.washington.edu/phylip/doc/dnaml.html. This link includes many other
program packages, ML and other phylogeny inference methods.

PHYLIP uses a Hidden Markov Model (HMM) method of inferring different rates of evolution at
different  sites. It allows to specify that there will be a number of different possible evolutionary rates,
what the prior probabilities of occurrence of each is, and what the average length of a patch of sites
all having the same rate is. The rates can also be chosen by the program to approximate a Gamma
distribution of rates, or a Gamma distribution plus a class of invariant sites. The program computes
the likelihood by summing it over all possible assignments of rates to sites, weighting each by its prior
probability of occurrence.
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ML TREES, PHYLIP-PROGRAM



Below,  next page (taken from Lemey et al., The phylogenetic handbook, 2009) one
procedure:  The algorithm recursively adds the tth OTU in a stepwise fashion to all possible
trees containing the first t – 1 OTUs until all n OTUs have been joined. For rooted trees the
algorithm is modified by including one additional artificial OTU that locates the root of each
tree. In this case,  the first three trees generated represent each of the three possible rootings
of an unrooted three-OTU tree, and the algorithm proceeds as in the unrooted case. Thus,
the number of rooted trees for n OTUs is equal to the number of unrooted trees for n + 1
OTUs.

Six OTUs (A,B,C,D,E,F), start with A,B,C, the fourth, D, connected to each of the three
branches, fifth, E, connected to each three trees all 15 possible trees generated.... all
105 possible trees generated and their lengths evaluated.
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SEARCHING FOR THE ML-TREE
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GENERATION OF ALL POSSIBLE TREES
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In the example 6 OTUs. The
method operates by implicitly
evaluating all possible trees,
but cutting off paths of the
search tree when it is
determined that they cannot
possibly lead to optimal trees.

The algorithm effectively
traces the same route through
the search tree as used in the
previous example, but the
length of each tree
encountered at the node of
the search tree is evaluated
even if it does not contain the
full set of OTUs.

Throughout the traversal, an
upper bound on the length of
the optimal tree(s) in
maintained. Initially the
upper bound can simply be
set  to inifinity.

BRANCH-AND-BOUND ALGORITHM, AN EXACT METHOD by HENDY & PENNY (1982)
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...continued..
The traversal  starts by moving down the left branch of the search tree successively connecting OTU D
and E to the initial tree with lengths of 221 and 234 steps, respectively.

Then, connecting OTU F provides the first set of full-tree lengths. After this connection, it is known that
a tree of 241 steps exists, although it is not yet known whether this tree is optimal. Therefore this
number  is taken as a new upper bound on the length of the optimal tree (i.e.  the optimal tree cannot be
longer than 241 steps because a tree at this length has already been identified).

After this, the algorithm backtracks on the search tree and takes the second path out of the 221-step,
4-OTU tree. The 5-OTU tree containing OTU E obtained by following this path requires 268 steps. Thus:
there is no point in evaluating the seven trees produced by  connecting taxon F to this tree because they
cannot possibly require fewer than 268 steps, and a tree of 241 steps has already been found. By
cutting off paths in this way, large portions of the search tree may be avoided and a considerable
amount of computation time saved.

The algorithm proceeds to traverse the remainder of the search tree, cutting off paths where possible,
and storing optimal trees when they are found. In the example, a new optimal tree is found at a length of
229 steps, allowing the upper bound on the tree length to be further reduced. Then, when the 233-step
tree containing the first five OTUs is encountered, the seven trees that would be derived from it can be
immediately rejected because they would also require at least 233 steps. The algorithm terminates
when the root of the search tree has been visited for the last time, at which all optimal trees will have
been identified.

This methods is said to be feasible for 12-25 OTUs.

BRANCH-AND-BOUND ALGORITHM



Phylogeny methods - Parsimony, ML, Bayesian / Biometry and bioinformatics II 2013 / SVarvio 52

Refinements to the branch-and-bound algorithm to improve its performance:

Including a heuristic method, like stepwise addition (described below).

Including neighbor-joining algorithm (cf. distance matrix methods of  phylogeny inference) to
find a tree whose length provides a smaller initial upper  bound,  which allows earlier
termination of search paths in the early stages of  the algorithm.

Ordering the sequential addition of OTUs in a way that promotes earlier cutoff of paths,
rather than just adding them in order of their appearance in the data matrix.

Using techniques such as pairwise character incompatibility to improve the lower bound
on the minimum length of trees that can be obtained by counting  traversal of the search
tree allows earlier cutoffs.

The algorithm can ne used for any optimality criterion - in addition to parsimony, also maximum
likelihood - whose objective function is guaranteed to be non-decreasing  as additional OTUs are
connected to the tree.

For parsimony and maximum likelihood approaches  this is true: increasing the variability of
the data by adding additional OTUs cannot possibly lead to a decrease in tree length.

For minimum-evolution distance criterion this does not work:  One objective function is
optimized for the computation of branch lengths (i.e. least-squares fit), but a different one is
used to score the trees (i.e. sum of branch lengths).

BRANCH-AND-BOUND ALGORITHM
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Follows the same kind of search tree as the
branch-and-bound method, but  unlike the exact
exhaustive enumeration, stepwise addition
commits to a path out of each node on the search
tree that looks most  promising at the moment.
This might not lead to a global  optimum.

In the previous example of exact
branch-and –bound, tree 22 is shorter
than trees 2 or 21. Thus only trees
derivable from tree 22 remain as
candidates.

Following this path ultimately leads
to selection of a tree of 233 steps
which is only a local rather than a
global optimum.

The path leading to the optimal
229-step tree was rejected because it
appeared less promising at the 4-OTU
stage.

Greedy heuristics are called local-search
methods because of their tendency to become
“stuck” in local optima.

HEURISTICS, GREEDY ALGORITHMS:  STEPWISE ADDITION, FARRIS (1970)
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Branch-swapping methods involve cutting
off one or more pieces of a tree (subtrees)
and reassembling them in a way that is locally
different from the original tree.

Nearest-neighbor interchange (NNI) is the
simplest  type of rearrangement.

For any binary tree containing T terminal
OTUs, there are T – 3 internal branches.
Each branch is visited, and the two
topologically distinct rearrangements that can
be obtained by swapping a subtree connected
to one end of the branch with a subtree
connected to the other end of the branch are
evaluated.

This proceduce generates a relatively small
number of perturbations whose lengths or
scores can be compared to the original
tree.

A more extensive rearrangement scheme is
subtree pruning and regrafting (next page).

HEURISTICS BY BRANCH-SWAPPING: NEAREST-NEIGHBOR INTERCHANGE (NNI)
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The method subtree pruning and regrafting
(SPR) involves clipping off all possible
subtrees from the main tree and reinserting
them at all possible locations, but avoiding
pruning and grafting operations that would
generate the same tree redundantly.

(a) The tree to be rearranged

(b), (c), (d)
SPRs resulting from pruning of
branches, x, y, z, respectively.  In
addition to these rearrangements, all
terminal OTUs (leaves) would be pruned
and reinserted elsewhere on the tree.

(e), (f), (g)
Trees resulting from regrafting of
branches x, y, z, respectively, to other
parts of the tree.

HEURISTICS BY BRANCH-SWAPPING: SUBTREE PRUNING AND REFRAFTING (SPR)
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Tree bisection and reconnection (TBR)
involve cutting a tree into two subtrees by
cutting one branch, anf then reconnecting the
two subtrees by creating a new branch that
joins a branch on one subtree to a branch  on
the other. All possible pairs of branches are
tried, avoiding redundancies.

(a) The tree to be rearranged.

(b) Bisection of branch x and reconnection to
branch u. Other TBRs would connect x to
z,v and w, respectively.

(c) Branch numbering for reconnection
distances involving branch x.

(d) Bisection of branch y and reconnection of
branch r to v. Other TBRs would connect r
to w,  r to y´, s to v, s to w, s to y´, y to v and
y to w, respectively.

HEURISTICS BY BRANCH-SWAPPING: TREE BISECTION AND RECONNECTION (TBR)

(e) Branch numbering for reconnection distances involving branch y. All other branches, both internal and
external, also would be cut in a full round of TBR swapping.
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The set of possible NNIs for a tree is a subset of the possible SPR rearrangements and the set of
possible SPR rearrangements, in turn, a subset of the possible TBR rearrangements.

For TBR rearrangements, a “reconnection distance” can be defined by numbering the branches from
zero starting at the cut branch (see the figure, (c) and (d)) .  The reconnection distance is then equal to
the sum of numbers of the two branches that are reconnected. The reconnection distance is then equal to
the sum of numbers of the two branches that are reconnected and have the following three properties:

NNIs are the subset of TBRs that have a reconnection distance of 1.
SPRs are the subset of TBRs so that exactly one of the two reconnected branches is

numbered zero.
TBRs that are neither NNIs nor SPRs are those for which both reconnected branches have

non-zero numbers.

The reconnection distance can be used to limit the scope of TBR rearrangements tried during the
branch-swapping procedure.

The default strategy used for each of these rearrangement methods is to visit branches of the “current”
tree in some arbitrary and predefined order. At each branch, all of the non-redundant branch swaps are
tried and the score of each resulting tree is obtained.

If a rearrangement is succesful in finding a shorter tree, the previous tree is discarded and the
rearrangement process is restarted on this new tree. If all possible rearrangements have been tried
without success in finding a better tree, the swapping process terminates.

RELATIONSHIPS BETWEEN  NNI, SPR, TBR  AND THEIR PERFORMANCE
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RELATIONSHIPS BETWEEN  NNI, SPR, TBR  AND THEIR PERFORMANCE

The three basic rearrangement operations on the thick branch in the full tree.  In SPR and
TBR all pairs of  “circled”  branches among the two subtrees will be connected  (dashed
lines), except the two filled circles to each other, since this yields to full tree again.
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Optionally, when trees are found that are equal in score to the current tree (e.g. equally parsimonious
trees or trees that have identical likelihoods within round-off error), they are appended to a list of
optimal trees.

In this case, when the arrangement of one tree finishes, the next tree in the list is
obtained and input to the branch-swapping algorithm.

If the rearrangement of this next tree yields a better tree than any found so far, all trees in
the current  list are discarded and the entire process is restarted using a newly discovered
tree.

The algorithm terminates when every possible rearrangement has been tried on each of the stored
trees.

In addition to identifying multiple and equally good trees, this strategy often identifies better trees
than would be found if only a single tree were stored at any one time. This can happen when all of the
trees within one rearrangement of the current tree are no better than the current tree. However, some
of the adjacent trees can, in turn, be rearranged to yield trees that are better.

By only accepting proposed rearrangements that are equal to, or better than, the current best tree,
these “hill-climbing algorithms” eventually reach the peak of the slope on which they start. However, the
peak may not represent a global optimum.

Some phylogeny software packages have options to begin the search from several
starting points (randomly chosen tree topologies) in the hope that at least one of them will
result in climbing the right hill.

RELATIONSHIPS BETWEEN  NNI, SPR, TBR AND THEIR PERFORMANCE
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A surface rising above a two-dimensional plane. Thwe process of climbing uphill on the surface is
illustrated, as well as the failure to find a higher peak by a”greedy” method.

RELATIONSHIPS BETWEEN  NNI, SPR, TBR AND THEIR PERFORMANCE

If start here …

…end up here But gobal maximum is here
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An alternative method takes advantage of the fact that, for data sets of non-trivial
size and complexity, varying the sequence  (order) in which  OTUs are added during
stepwise addition may produce different tree topologies that each fit the data
reasonably well .

Starting branch-swapping searches from a variety of random-addition-sequence
replicates thereby provides a mechanism for performing multiple searches that each
begins  at a relatively high point of some hill, increasing the probability that the
overall search will find an optimal tree.

Random-addition-order searches are also useful in identifying multiple “islands” of trees that
may exist. Each island represents all of the trees that can be obtained by an order of
rearrangements, starting from any tree in the island, keeping and rearranging all optimal trees
that are discovered. If two optimal trees exist so that it is impossible to reach one tree by an
order  of rearrangements starting from the other without passing through trees that are
suboptimal, these trees are on different islands. Because trees from different islands tend to be
topologically dissimilar, it is important to detect multiple island when they exist.

All these methods are said to be effective for data sets containing up to ~100 OTUs.

For larger data sets, some methods that use a variety of stochastic-search and related
algorithms that  are better able to avoid entrapment in local optima.

RELATIONSHIPS BETWEEN  NNI, SPR, TBR AND THEIR PERFORMANCE



Phylogeny methods - Parsimony, ML, Bayesian / Biometry and bioinformatics II 2013 / SVarvio 62

BAYESIAN
PHYLOGENY INFERENCE

Bayesian approach is closely related and differs in the use of prior distribution of the quantity
being inferred.

Equation (1) in the description of maximum likelihood (see the slides ”Maximum likelihood
phylogeny inference”) gives Bayes´ theorem in an odds-ratio form.

Given and hypothesis H and some data D, the probability of the hypothesis given the data is

P(H | D) = P(H & D) / P(D) (12)

Maximum likelihood chooses amongst
hypotheses by selecting the one which maximizes
the likelihood, i.e. which renders the data most
plausible. The likelihood of a hypothesis is equal
to the probability of observing the data, given the
hypothesis.

(MC)3
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BAYESIAN PHYLOGENY INFERENCE

The joint probability of H and D, P(H & D), can be written as product of the probability of H
and the conditional probability of D given H

P (H & D) = P (H) P (D | H ) (13)

Substituting (2) into (1): P (H | D) = [ P (H) P (D | H ] / P (D) (14)

This is Bayes´ theorem in its simplest form.
The denominator P (D) is the sum of the numerators P (H & D)  over all
possible hypotheses H and is the quantity that is needed to normalize them
so that they add up to 1.

This leads to the more usual form of the theorem

P (H | D)  = [ P (H) P (D | H ] / H P (H) P ( D | H ) (15)

When not in odds-ratio form, Bayes´ theorem allows turning a prior distribution
into a posterior distribution. It computes the probabilities of different hypotheses
in the light of the data.
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BAYESIAN PHYLOGENY INFERENCE

Recap once more equation (1) in maximum likelihood inference. The odds favoring one
hypothesis over another are the odds the person gave them in itially (the prior odds),
multiplied by the ratio of the likelihoods under the data.  Suppose that there are two possible
hypotheses, and in advance we favor H1 over H2 , giving them odds 3:2. Now the data is
examined.  The likelihood ratio P (D | H1 ) / P (D | H2) turns out to be ½, so that the data is
half as probable given hypothesis 1 as it is given hypothesis 2.  Bayes´ theorem tells us to
compute the posterior odds ratio by multiplying these to get (3/2) x (1/2) = ¾.  After looking at
the data we now give odds in favor of H1 of only 3:4 . This very reasonable, given the
correctness of the prior odds. Controversial is whether usable prior odds exist.

Bayesian statistics tries to come up with valid prior probabilities and use
formulas such as (1) to infer  valid posterior probabilities of the various
hypotheses.

Non-Bayesians are sceptical of the ability to come up with valid prior
probabilities. They may prefer that hypothesis that maximizes the likelihood
P(D H). This may not end up being the hypothesis that has the largest posterior
probability, but if the amount of data is large, the chance that it is, is good. As the
amount of data increases, this maximum likelihood estimate will become more
and more likely to be the best estimate as well, as equation (3) becomes
dominated by the quantity in large parentheses.
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BAYESIAN PHYLOGENY INFERENCE

The essence of the Bayesian viewpoint is that there is no logical distinction between model
parameters and data.  Both are random variables with a joint probability distribution that is
specified by a probabilistic model. From this viewpoint, data are observed variables and parameters
are unobserved variables.

The joint distribution is a product of the likelihood and the prior.

The prior includes information about the values of a parameter before examining the data in the form
of a probability distribution.

The likelihood is a conditional distribution that specifies the probability of the observed data given
any particular values for the parameters and is based on a model of the underlying process.

Together these two functions combine all available information about the parameters.

Bayesian statistics involves manipulating this joint distribution in various ways to make inference
about the parameters, or the probability model, given the data.

The main aim of Bayesian inference is to calculate the posterior distribution of the parameters,
which is the conditional distribution of parameters given the data.
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BASIC FEATURES THAT UNDERLIE BAYESIAN INFERENCE
Data D can take any value that is measured along the x-axis.
Similarly, the parameter value can take any value that is measured

along the y-axis.
Bayesian inference involves creating the joint distribution of parameters

and data,  P(D, ), illustrated by the contour intervals in the figure. This
distribution can be obtained simply as the product of the prior P( ) and
the likelihood P(D| ).

Typically, the likelihood will arise from a statistical model in which it is
necessary to consider how the data can be 'explained' by the
parameter(s).

The prior is an assumed distribution of the parameter that is obtained
from background knowledge.

Marginal distributions are obtained by summing (integrating) the joint
distribution either over the data, recovering the prior (the distribution on
the right of the joint distribution), or over the values of the parameter,
giving the  marginal likelihood (the first distribution directly below the
joint distribution).

Conditional distributions ( '|' in notation) are indicated by the dotted
lines in the figure, and represent taking a 'slice' through the joint
distribution and then rescaling the distribution so that the sum (integral)
of possible values is equal to one. The scaling factor that is needed is
given by the marginal distribution. Any conditional distribution is simply
the joint distribution divided by a marginal distribution. For example, the
likelihood can be recovered by dividing the joint distribution by the prior.

The posterior distribution, P( |D) — the key quantity in Bayesian
inference — is the joint distribution divided by the marginal likelihood. It
is the computation of the marginal likelihood (that is, the integrations
denoted by the arrows that point down from the joint distribution) that is

typically problematic.
From: Beaumont & Rannala, Nature Reviews Genetics 5:251-261.
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A SHORT HISTORY OF BAYESIAN PHYLOGENY INFERENCE

1966, Gomberg, ”Bayesian” postdiction in an evolution process. Unpublished manuscript, Pavia,
Italy (referred to in the book by J. Felsenstein, Inferring phylogenies).  A  Bayesian approach to
inferring phylogenies from characters that change according to a Brownian motion process.

In 1970´ discussions about possibilities of using random models of branching and extinction to
place priors on phylogenetic trees. Conclusions were that this was not computationally practical.
Also, controversies between scientists that favor parsimony methods over all other methods and
those that invoked Bayesian approaches.

The first (almost) fully Bayesian approach is from 1987 by Smouse and Li (Evolution 41: 1162-
1176). They used a birth-and-death process prior on the trees in an analysis of DNA sequences
using molecular clock. For a fixed interval of time since tyhe start of the process, they inferred the
birth, death and subsitution rates for a given substitution model (HKY) by finding values that
maximized the posterior probabilities summed over all trees. Fixing these parameters at their
estimated values, they used the probability contributed to the posterior by each tree topology as its
posterior probability.  This approach used numerical integration of the posterior probabilities over
all interior node times for each given tree topology.  As the number of topologies is huge even for
quite small number of  OTUs and there is the need to integrate over many dimensions, only a
small number of OTUs could be used (in 1987, computers were not as they are now).
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BAYESIAN PHYLOGENY INFERENCE, MrBAYES

Currently the program package MrBayes http://mrbayes.csit.fsu.edu/ is the widely used
approach in phylogeny data analysis.

Very practical, however, not necessarily easy, see this:
https://lists.sourceforge.net/lists/listinfo/mrbayes-users

Has solved the following problem: The expression for the posterior distribution has a
denominator that can be very difficult to compute. It involves summing up all possible
hypotheses. Solution:

Samples from  the posterior distribution can be drawn by using a Markov chain
that does not need to know the denominator.

Markov chain Monte Carlo methods are now in widespread use in phylogeny
inference (as well as in many other contexts).

A Markov chain generates a series of random variables such that the probability distribution of
future states is completely determined by the current state at any point in the chain. Under
certain conditions, a Markov chain will have a 'stationary distribution', meaning that if the
chain is iterated for a sufficient period, the states it visits will tend to a specific probability
distribution that no longer depends on the iteration number or the initial state of the variable.
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BOOTSTRAPPING vs MCMC IN PHYLOGENY  CONFIDENCE / CREDIBILITY
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BAYESIAN PHYLOGENY INFERENCE

MCMC: class of methods that rely on simulating a Markov chain, to study properties of
a complicated probability distribution that cannot be easily studied using analytical
methods.

The basic idea that underlies all MCMC methods is to construct a Markov chain with a
stationary distribution that is the probability distribution of interest, and then to sample
from this distribution to make inferences.

In Bayesian analysis, this distribution is usually the joint posterior distribution of one or
more parameters.

MCMC has also been used for estimating likelihoods and other purposes in maximum-
likelihood inference.

Example: If 96% of the samples from the posterior distribution of phylogenetic trees
have (human, chimp) as a monophyletic group, then we can say that the probability that
these are a monophyletic group is 96%.
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MCMC

The simplest form of MCMC is Monte Carlo integration which is widely applied in
statistical genetics. The MC simulation method has the advantage that the estimates
obtained are unbiased and the standard error of the estimates can be accurately
estimated because the simulated random variables are i.i.d.

The Metropolis–Hastings (MH) algorithm is similar to the MC simulation procedure in
that it aims to sample from a stationary Markov chain to simulate observations from a
probability distribution. Rather than simulating independent observations from the
stationary distribution, it simulates sequential values from the chain until it converges and
then samples simulated values at intervals from the chain to mimic independent samples
from the stationary distribution.

The MH algorithm has the advantage that it can improve the efficiency of simulations
when the state space is large because it focuses the simulated variables on values with
high probability in the stationary chain. Disadvantages include the fact that in most
practical applications, there are no rigorous methods available to determine when the
chain has converged or what the optimal intervals between samples are to extract the
most information while preserving independence between observations.

Text is copied from:
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MCMC

MCMC is used to generate a valid sample from the posterior probability

First, a Markov chain that has the posterior as its stationary distribution is set up.
The chain is then started at a random point and run until it converges onto this distribution.

In each step (generation) of the chain, a small change is made to the current values of the model
parameters (step 2).

The ratio r of the posterior probability of the new and current states is then calculated
If r >.1, movement is uphill and the move is always accepted.
If r < 1, movement is downhill and the new state is accepted with probability r.

.From:  Lemey et al ,
The phylogenetic handbook, 2009
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AN EXAMPLE OF TOPOLOGIES

Posterior probability distribution for a phylogenetic analysis (human, chimpanzee, gorilla, orangutang).
The x-axis is an imaginary one-dimensional representation of the parameter space. It falls into three
different regions corresponding to the three different topologies. Within each region, a point along the axis
corresponds to a particular set of branch lengths on that topology. It is difficult to arrange the space such
that optimal branch length combinations for different topologies are close to each other. Therefore, the
posterior distribution is multimodal. The are under the curve falling in each tree topology region is the
posterior probability of that tree topology.

From:  Lemey et al ,
The phylogenetic handbook, 2009
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MCMCMC

Metropolis coupling uses one or more heated chains to accelerate mixing in the so-called cold chain
sampling from the posterior distribution. The heated chains are flattened out versions of the posterior,
obtained by raising the posterior probability to a power smaller than one. The heated chains can move more
readily between peaks in the landscape because the valleys between peaks are shallower. At regular
intervals, one attempts to swap the states between chains. If a swap is accepted, the cold chain can jump
between isolated peaks in the posterior in a single step, accelerating its mixing over complex posterior
distributions.

From:  Lemey et al ,
The phylogenetic handbook, 2009


