
Before the advent of DNA sequencing technologies, 
phylogenetic trees were used almost exclusively to 
describe relationships among species in systematics and 
taxonomy. Today, phylogenies are used in almost every 
branch of biology. Besides representing the relation-
ships among species on the tree of life, phylogenies are 
used to describe relationships between paralogues in a 
gene family1, histories of populations2, the evolution-
ary and epidemiological dynamics of pathogens3,4, the 
genealogical relationship of somatic cells during differ-
entiation and cancer development5 and the evolution 
of language6. More recently, molecular phylogenetics 
has become an indispensible tool for genome compari-
sons. In this context, it is used: to classify metagenomic 
sequences7; to identify genes, regulatory elements and 
non-coding RNAs in newly sequenced genomes8–10; to 
interpret modern and ancient individual genomes11–13; 
and to reconstruct ancestral genomes14,15.

In other applications, the phylogeny itself may not be 
of direct interest but must nevertheless be accounted for 
in the analysis. This ‘tree thinking’ has transformed many 
branches of biology. In population genetics, the devel-
opment of the coalescent theory16,17 and the widespread 
availability of gene sequences for multiple individuals 
from the same species have prompted the development 
of genealogy-based inference methods, which have rev-
olutionized modern computational population genet-
ics. Here, the gene trees that describe the genealogy of 
sequences in a sample are highly uncertain; they are not 
of direct interest but nevertheless contain valuable infor-
mation about parameters in the model. Tree thinking has 
also forged a deep synthesis of population genetics and 

phylogenetics, creating the emerging field of statistical  
phylogeography. In species tree methods2,18,19, the gene 
trees at individual loci may not be of direct interest and 
may be in conflict with the species tree. By averaging 
over the unobserved gene trees under the multi-species 
coalescent model20, those methods infer the species tree 
despite uncertainty in the gene trees. In comparative 
analysis, inference of associations between traits (for 
example, testis size and sexual promiscuity) using the  
observed traits of modern species should consider  
the species phylogeny to avoid misinterpreting historical 
contingencies as causal relationships21. In the inference 
of adaptive protein evolution, the phylogeny is used to 
trace the synonymous and nonsynonymous substitu-
tions along branches to identify cases of accelerated 
amino acid change22, even though the phylogeny is not 
of direct interest.

Nowadays, every biologist needs to know something 
about phylogenetic inference. However, to an experi-
mental biologist who is unfamiliar with the field, the 
existence of many analytical methods and software 
packages might seem daunting. In this Review, we 
describe the suite of current methodologies for phylo-
genetic inference using sequence data. We also discuss 
various statistical criteria that are useful for choosing the 
methods that are best suited for a particular question 
and data type. Next-generation sequencing (NGS) tech-
nologies are generating huge data sets. In the analysis of 
such data sets, reducing systematic errors and increasing 
robustness to model violations are much more impor-
tant than reducing random sampling errors. We discuss 
several issues in the analysis of large data sets, such as the 
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Systematics
The inference of phylogenetic 
relationships among species 
and the use of such information 
to classify species.

Taxonomy
The description, classification 
and naming of species.

Coalescent
The process of joining ancestral 
lineages when the genealogical 
relationships of a random 
sample of sequences from  
a modern population are 
traced back.
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Abstract | Phylogenies are important for addressing various biological questions such  
as relationships among species or genes, the origin and spread of viral infection and  
the demographic changes and migration patterns of species. The advancement of 
sequencing technologies has taken phylogenetic analysis to a new height. Phylogenies 
have permeated nearly every branch of biology, and the plethora of phylogenetic 
methods and software packages that are now available may seem daunting to an 
experimental biologist. Here, we review the major methods of phylogenetic analysis, 
including parsimony, distance, likelihood and Bayesian methods. We discuss their 
strengths and weaknesses and provide guidance for their use.
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Box 1 | Tree concepts

A phylogeny is a model of genealogical history in  
which the lengths of the branches are unknown 
parameters. For example, the phylogeny on the left  
is generated by two speciation events that occurred  
at time points τ

0
 and τ

1
. The branch lengths (b

0
, b
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and b
3
) are typically expressed in units of expected 

number of substitutions per site and measure the 
amount of evolution along the branches.

If the substitution rate is constant over time or among 
lineages, we say that the molecular clock holds60. The 
tree will then have a root and be ultrametric, meaning 
that the distances from the tips of the tree to the root 
are all equal (for example, b

0
 + b

1
 = b

0
 + b

2
 = b

3
). A rooted 

tree for s species can then be represented by the ages of the s – 1 ancestral nodes and thus involves s – 1 branch-length 
parameters. The procedure of inferring rooted trees by assuming the molecular clock is called molecular clock rooting. 
For distantly related species, the clock hypothesis should not be assumed. Most phylogenetic analyses are therefore 
conducted without the assumption of the clock. If every branch on the tree is allowed to have an independent 
evolutionary rate, commonly used models and methods are unable to identify the location of the root, so only unrooted 
trees are inferred. An unrooted tree for s species then has 2s – 3 branch length parameters. A commonly used strategy to 
‘root the tree’ is to include outgroup species in the analysis, which are known to be more distantly related than the species 
of interest. Although the inferred tree for all species is unrooted, the root is believed to be located along the branch that 
leads to the outgroup so that the tree for the ingroup species is rooted. This strategy is called outgroup rooting.

Gene trees
The phylogenetic or 
genealogical tree of  
sequences at a gene locus  
or genomic region.

Statistical phylogeography
The statistical analysis of 
population data from closely 
related species to infer 
population parameters and 
processes such as population 
sizes, demography, migration 
patterns and rates.

Species tree
A phylogenetic tree for a set  
of species that underlies the 
gene trees at individual loci.

Systematic errors
Errors that are due to an 
incorrect model assumption. 
They are exacerbated when 
the data size increases.

Random sampling errors
Errors or uncertainties in 
parameter estimates owing  
to limited data.

Cluster algorithm
An algorithm of assigning a  
set of individuals to groups (or 
clusters) so that objects of the 
same cluster are more similar  
to each other than those from 
different clusters. Hierarchical 
cluster analysis can be 
agglomerative (starting  
with single elements and 
successively joining them into 
clusters) or divisive (starting 
with all objects and successively 
dividing them into partitions).

Markov chain
A stochastic sequence (or chain) 
of states with the property that, 
given the current state, the 
probabilities for the next state 
do not depend on the past 
states.

Transitions
Substitutions between the two 
pyrimidines (T↔C) or between 
the two purines (A↔G).

Transversions
Substitutions between a 
pyrimidine and a purine  
(T or C↔A or G).

impact of missing data and strategies of data partition-
ing. The literature of molecular phylogenetics is large 
and complex23,24; the aim of this Review is to provide a 
starting point for exploring the methods further.

Phylogenetic tree reconstruction: basic concepts
A phylogeny is a tree containing nodes that are con-
nected by branches. Each branch represents the per-
sistence of a genetic lineage through time, and each 
node represents the birth of a new lineage (BOX 1). If 
the tree represents the relationship among a group of 
species, then the nodes represent speciation events. In 
other contexts, the interpretation might be different. 
For example, in a gene tree of sequences sampled from a 
population, the nodes represent birth events of individu-
als who are ancestral to the sample, whereas in a tree 
of paralogous gene families, the nodes might represent 
gene duplication events.

Phylogenetic trees are not directly observed and are 
instead inferred from sequence or other data. Phylogeny 
reconstruction methods are either distance-based or 
character-based. In distance matrix methods, the dis-
tance between every pair of sequences is calculated, 
and the resulting distance matrix is used for tree recon-
struction. For instance, neighbour joining25 applies 
a cluster algorithm to the distance matrix to arrive at a 
fully resolved phylogeny. Character-based methods 
include maximum parsimony, maximum likelihood 
and Bayesian inference methods. These approaches 
simultaneously compare all sequences in the alignment, 
considering one character (a site in the alignment) at a 
time to calculate a score for each tree. The ‘tree score’ is 
the minimum number of changes for maximum parsi-
mony, the log-likelihood value for maximum likelihood 
and the posterior probability for Bayesian inference. In 
theory, the tree with the best score should be identified 
by comparing all possible trees. In practice, because of 

the huge number of possible trees, such an exhaustive 
search is not computationally feasible except for very 
small data sets. Instead, heuristic tree search algorithms 
are used. These approaches often generate a starting tree 
using a fast algorithm and then perform local rearrange-
ments to attempt to improve the tree score. A heuristic 
tree search is not guaranteed to find the best tree under 
the criterion, but it makes it feasible to analyse large data 
sets. To describe the data, distance matrix, maximum 
likelihood and Bayesian inference all make use of a sub-
stitution model and are therefore model-based, whereas 
maximum parsimony does not have an explicit model 
and its assumptions are implicit.

Distance matrix method
Distance calculation. Pairwise sequence distances are 
calculated assuming a Markov chain model of nucleotide 
substitution. Several commonly used models are illus-
trated in FIG. 1. The JC69 model26 assumes an equal rate 
of substitution between any two nucleotides, whereas 
the K80 model27 assumes different rates for transitions 
and transversions. Both models predict equal frequen-
cies of the four nucleotides. The assumption of equal 
base frequencies is relaxed in the HKY85 model28 and 
the general time reversible (GTR) model29,30. Because 
of the variation in local mutation rate and in selective 
constraint, different sites in a DNA or protein sequence 
often evolve at different rates. In distance calculation, 
such rate variation is accommodated by assuming a 
gamma (Γ) distribution of rates for sites31, leading to 
models such as JC69 + Γ, HKY85 + Γ or GTR + Γ.

Distance matrix methods. After the distances have been 
calculated, the sequence alignment is no longer used 
in distance matrix methods. Here we mention three 
such methods: least squares, minimum evolution and 
neighbour joining. The least squares method32 (see also 
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Figure 1 | Markov models of nucleotide substitution. The thickness of the arrows 
indicates the substitution rates of the four nucleotides (T, C, A and G), and the sizes  
of the circles represent the nucleotide frequencies when the substitution process  
is in equilibrium. Note that both JC69 and K80 predict equal proportions of the  
four nucleotides.

Unrooted trees
Phylogenetic trees for  
which the location of  
the root is unspecified.

REF. 33) minimizes a measure of the differences between 
the calculated distances (dij) in the distance matrix  
and the expected distances (d̂ij) on the tree (that is, 
the sum of branch lengths on the tree linking the two  
species i and j):

Q = (dij – dij)2 (1)ˆΣ
s

i = 1
Σ

s

i = 1

This is the same least squares method used in statis-
tics for fitting a straight line y = a + bx to a scatter plot. 
Optimizing branch lengths (or d̂ij) leads to the score Q 
for the given tree, and the tree with the smallest score is 
the least squares estimate of the true tree.

The minimum evolution method34,35 uses the tree 
length (which is the sum of branch lengths) instead of 
Q for tree selection, even though the branch lengths can 
still be estimated using the least squares criterion. Under 
the minimum evolution criterion, shorter trees are more 
likely to be correct than longer trees are.

The most widely used distance method is neighbour 
joining25. This is a cluster algorithm and operates by 
starting with a star tree and successively choosing a pair 
of taxa to join together (based on the taxon distances), 
until a fully resolved tree is obtained. The taxa to be 
joined are chosen in order to minimize an estimate of 
tree length36. The two joined taxa (for example, species 
1 and 2 in FIG. 2) are then represented by their ances-
tor (for example, node y in FIG. 2), and the number of 
taxa that are connected to the root (node x in FIG. 2) 
is reduced by one (FIG. 2). The distance matrix is then 
updated with the joined taxa replacing the two origi-
nal taxa. See REF. 36 for a discussion of the neighbour 
joining updating formula. An efficient implementation 
of neighbour joining is found in the program MEGA37 
(TABLE 1).

Strengths and weaknesses of distance methods. One 
advantage of distance methods (especially of neighbour 
joining) is their computational efficiency. The cluster 
algorithm is fast because it does not need to compare 
as many trees under an optimality criterion as maxi-
mum parsimony and maximum likelihood do. For this 
reason, neighbour joining is useful for analysing large 
data sets that have low levels of sequence divergence.  

Note that it might be important to use a realistic sub-
stitution model to calculate the pairwise distances. 
Distance methods can perform poorly for very divergent 
sequences because large distances involve large sampling 
errors, and most distance methods (such as neighbour 
joining) do not account for the high variances of large 
distance estimates. Distance methods are also sensitive 
to gaps in the sequence alignment38.

Maximum parsimony
Parsimony tree score. The maximum parsimony method 
minimizes the number of changes on a phylogenetic 
tree by assigning character states to interior nodes 
on the tree. The character (or site) length is the mini-
mum number of changes required for that site, whereas  
the tree score is the sum of character lengths over all 
sites. The maximum parsimony tree is the tree that  
minimizes the tree score.

Some sites are not useful for tree comparison by 
parsimony. For example, constant sites, for which the 
same nucleotide occurs in all species, have a character 
length of zero on any tree. Singleton sites, at which only 
one of the species has a distinct nucleotide, whereas all 
others are the same, can also be ignored, as the char-
acter length is always one. The parsimony-informative 
sites are those at which at least two distinct characters 
are observed, each at least twice. For four species, only 
three site patterns are informative: xxyy, xyxy and xyyx, 
where x and y are any two distinct nucleotides. There 
are three possible unrooted trees for four species, and 
which of them is the maximum parsimony tree depends 
on which of the three site patterns occurs most often in 
the alignment.

An algorithm for finding the minimum number of 
changes on a binary tree (and for reconstructing the 
ancestral states to achieve the minimum) was developed 
by Fitch39 and Hartigan40. PAUP41, MEGA37 and TNT42 
are commonly used parsimony programs.

Parsimony was originally developed for use in ana-
lysing discrete morphological characters. During the 
late 1970s, it began to be applied to molecular data. 
A controversy arose concerning whether parsimony 
(without explicit assumptions) or likelihood (with an 
explicit evolutionary model) was a better method for 
phylogenetic analysis23. The controversy has subsided, 
and the importance of model-based inference methods 
is broadly recognized. The use of parsimony is still com-
mon: not because it is believed to be assumption-free, 
but because it often produces reasonable results and is 
computationally efficient.

Strengths and weaknesses of parsimony. A strength of 
parsimony is its simplicity; it is easy to describe and to 
understand, and it is amenable to rigorous mathematical 
analysis. The simplicity also helps in the development of 
efficient computer algorithms.

A major weakness of parsimony is its lack of explicit 
assumptions, which makes it nearly impossible to incor-
porate any knowledge of the process of sequence evolu-
tion in tree reconstruction. The failure of parsimony 
to correct for multiple substitutions at the same site 
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Figure 2 | The neighbour joining algorithm. The neighbour joining algorithm is a 
divisive cluster algorithm. It starts from a star tree: two nodes are then joined together 
on this tree (in this example, nodes 1 and 2), reducing the number of nodes at the root 
(node x) by one. The process is repeated until a fully resolved tree is generated.

Long-branch attraction
The phenomenon of inferring 
an incorrect tree with long 
branches grouped together by 
parsimony or by model-based 
methods under simplistic 
models.

makes it suffer from a problem known as long-branch 
attraction43. If the correct tree (T1 in FIG. 3a) has two 
long external branches separated by a short internal 
branch, parsimony tends to infer the incorrect tree (T2 
in FIG. 3b), and the long branches are grouped together. 
When the branch lengths in T1 are extreme enough, the 
probability for site pattern xxyy, which supports the cor-
rect tree T1, may be smaller than that for xyxy, which 
supports the incorrect tree T2. Thus, the more sites 
there are in the sequence, the more probable it is for 
the pattern xxyy to be observed at fewer sites than xyxy, 
and the more certain that the incorrect tree T2 will be 
chosen to be the maximum parsimony tree. Parsimony 
thus converges to a wrong tree and is statistically incon-
sistent. Long-branch attraction has been demonstrated 
in many real and simulated data sets44 and is due to the 
failure of parsimony to correct for multiple changes at 
the same site or to accommodate parallel changes on the 
two long branches. See REFS 24,45 for more discussions 
of the issue.

Note that model-based methods (namely, distance, 
likelihood and Bayesian methods) also suffer from long-
branch attraction if the assumed model is too simplistic 
and ignores among-site rate variation46. In the recon-
struction of deep phylogenies, long-branch attraction 
(as well as unequal nucleotide or amino acid frequen-
cies among species) is an important source of systematic 
error47,48 (FIG. 3c,d). In such analyses, it is advisable to use 
realistic substitution models and likelihood or Bayesian 
methodologies. Dense taxon sampling to break long 
branches and removing fast-evolving proteins or sites 
can also be helpful.

Maximum likelihood
Basis of maximum likelihood. Maximum likelihood was 
developed by R. A. Fisher in the 1920s as a statistical 
methodology for estimating unknown parameters in a 
model. The likelihood function is defined as the prob-
ability of the data given the parameters but is viewed as 
a function of the parameters with the data observed and 
fixed. It represents all information in the data about the 
parameters. The maximum likelihood estimates (MLEs) 
of parameters are the parameter values that maximize the 
likelihood. Most often, the MLEs are found numerically 

using iterative optimization algorithms. The MLEs have 
desirable asymptotic (large-sample) properties: they are 
unbiased, consistent (they approach the true values) 
and efficient (they have the smallest variance among  
unbiased estimates).

Maximum likelihood tree reconstruction. The first 
algorithm for maximum likelihood analysis of DNA 
sequence data was developed by Felsenstein49. The 
method is now widely used owing to the increased com-
puting power and software implementations and to the 
development of increasingly realistic models of sequence 
evolution. Note that two optimization steps are involved 
in maximum likelihood tree estimation: optimization of 
branch lengths to calculate the tree score for each can-
didate tree and a search in the tree space for the maxi-
mum likelihood tree. From a statistical point of view, 
the tree (topology) is a model instead of a parameter, 
whereas branch lengths on the given tree and substitu-
tion parameters are parameters in the model. Maximum 
likelihood tree inference is thus equivalent to compar-
ing many statistical models, each with the same number 
of parameters. The attractive asymptotic properties of 
MLEs mentioned above apply to parameter estimation 
when the true tree is given but not to the maximum  
likelihood tree24,50.

Calculation of the likelihood on a given tree under 
various substitution models is explained in REFS 23,24. 
All substitution models used in distance calculation 
can be used here. Indeed, joint comparison of many 
sequences by likelihood makes it feasible to accom-
modate much more sophisticated models of sequence 
evolution. Most models used in molecular phylogenetics 
assume independent evolution of sites in the sequence 
so that the likelihood is a product of the probabilities 
for different sites. The probability at any particular site 
is an average over the unobserved character states at the 
ancestral nodes. Likelihood and parsimony analyses are 
similar in this respect, although parsimony only uses 
the optimal ancestral states, whereas likelihood averages 
over all possible states.

Early maximum likelihood implementations include 
PHYLIP51, MOLPHY52 and PAUP* 4.0 (REF. 41). Modern 
implementations, such as PhyML53, RAxML54 and 
GARLI55, are not only computationally much faster but  
are also more effective in finding trees with high like-
lihood scores. The recent inclusion of maximum 
likelihood in MEGA 5 (REF. 37) has made the method 
more accessible to biologists who are not experienced  
computer users (TABLE 1).

Strengths and weaknesses of the maximum likelihood 
method. One advantage of the maximum likelihood 
method is that all of its model assumptions are explicit, 
so that they can be evaluated and improved. The avail-
ability of a rich repertoire of sophisticated evolution-
ary models in the likelihood (and Bayesian) method is 
one of its major advantages over maximum parsimony. 
Modern inferences of deep phylogenies using conserved 
proteins almost exclusively rely on likelihood and 
Bayesian methods. For such inference, it is important 

R E V I E W S

306 | MAY 2012 | VOLUME 13  www.nature.com/reviews/genetics

© 2012 Macmillan Publishers Limited. All rights reserved



Table 1 | Functionalities of a few commonly used phylogenetic programs

Name Brief description Link Refs

Bayesian evolutionary 
analysis sampling trees 
(BEAST)

A Bayesian MCMC program for inferring rooted trees under the clock or 
relaxed-clock models. It can be used to analyse nucleotide and amino acid 
sequences, as well as morphological data. A suite of programs, such as Tracer 
and FigTree, are also provided to diagnose, summarize and visualize results

http://beast.bio.ed.ac.uk 135

Genetic algorithm for 
rapid likelihood inference 
(GARLI)

A program that uses genetic algorithms to search for maximum likelihood trees. 
It includes the GTR + Γ model and special cases and can analyse nucleotide, 
amino acid and codon sequences. A parallel version is also available 

http://code.google.com/p/
garli 

55

Hypothesis testing using 
phylogenies (HYPHY)

A maximum likelihood program for fitting models of molecular evolution. It 
implements a high-level language that the user can use to specify models and 
to set up likelihood ratio tests

http://www.hyphy.org 136

Molecular evolutionary 
genetic analysis (MEGA)

A Windows-based program with a full graphical user interface that can be 
run under Mac OSX or Linux using Windows emulators. It includes distance, 
parsimony and likelihood methods of phylogeny reconstruction, although its 
strength lies in the distance methods. It incorporates the alignment program 
ClustalW and can retrieve data from GenBank 

http://www.megasoftware.net 37

MrBayes A Bayesian MCMC program for phylogenetic inference. It includes all of the 
models of nucleotide, amino acid and codon substitution developed for 
likelihood analysis 

http://mrbayes.net 71

Phylogenetic analysis 
by maximum likelihood 
(PAML)

A collection of programs for estimating parameters and testing hypotheses 
using likelihood. It is mostly used for tests of positive selection, ancestral 
reconstruction and molecular clock dating. It is not appropriate for tree searches 

http://abacus.gene.ucl.ac.uk/
software 

137

Phylogenetic analysis 
using parsimony* and 
other methods (PAUP* 4.0)

PAUP* 4.0 is still a beta version (at the time of writing). It implements parsimony, 
distance and likelihood methods of phylogeny reconstruction 

http://www.sinauer.com/
detail.php?id=8060 

PHYLIP A package of programs for phylogenetic inference by distance, parsimony and 
likelihood methods 

http://evolution.
gs.washington.edu/phylip.html

PhyML A fast program for searching for the maximum likelihood trees using nucleotide 
or protein sequence data 

http://www.atgc-montpellier.
fr/phyml/binaries.php

53

RAxML A fast program for searching for the maximum likelihood trees under the GTR 
model using nucleotide or amino acid sequences. The parallel versions are 
particularly powerful

http://scoh-its.org/exelixis/
software.html

54

Tree analysis using new 
technology (TNT)

A fast parsimony program intended for very large data sets http://www.zmuc.dk/public/
phylogeny/TNT

42

Note: all programs can run on Windows, Mac OSX and Unix or Linux platforms. Except for PAUP*, which charges a nominal fee, all packages are free for download. 
See Felsenstein’s comprehensive list of programs at http://evolution.genetics.washington.edu/phylip/software.html. GTR, general time reversible; MCMC, Markov 
chain Monte Carlo.

Likelihood ratio test
A general hypothesis-testing 
method that uses the 
likelihood to compare two 
nested hypotheses, often using 
the χ2 distribution to assess 
significance.

Molecular clock
The hypothesis or observation 
that the evolutionary rate  
is constant over time or  
across lineages.

Prior distribution
The distribution assigned  
to parameters before the 
analysis of the data.

Posterior distribution
The distribution of the 
parameters (or models) 
conditional on the data. It 
combines the information  
in the prior and in the data 
(likelihood).

for the model to accommodate variable amino acid sub-
stitution rates among sites56 or even different amino acid 
frequencies among sites57,58.

Maximum likelihood has a clear advantage over dis-
tance or parsimony methods if the aim is to understand 
the process of sequence evolution. The likelihood ratio test 
can be used to examine the fit of evolutionary models59 
and to test interesting biological hypotheses, such as the 
molecular clock60,49 and Darwinian selection affecting pro-
tein evolution61–63. See REFS 22,24,64,65 for summaries of 
such tests in phylogenetics.

The main drawback of maximum likelihood is that 
the likelihood calculation and, in particular, tree search 
under the likelihood criterion is computationally 
demanding. Another drawback is that the method has 
potentially poor statistical properties if the model is mis-
specified. This is also true for Bayesian analysis (TABLE 2).

Bayesian methods
Basis of Bayesian inference. Bayesian inference is a gen-
eral methodology of statistical inference. It differs from 
maximum likelihood in that parameters in the model 
are considered to be random variables with statistical 

distributions, whereas in maximum likelihood they 
are unknown fixed constants. Before the analysis of the 
data, parameters are assigned a prior distribution, which 
is combined with the data (or likelihood) to generate 
the posterior distribution. All inferences concerning the 
parameters are then based on the posterior distribu-
tion. In the past two decades, Bayesian inference has 
gained popularity thanks to advances in computational 
methods, especially Markov chain Monte Carlo algorithms 
(MCMC algorithms).

Bayesian phylogenetics. Bayesian inference was intro-
duced to molecular phylogenetics in the late 1990s66–69.  
The early methods assumed a molecular clock60. 
Development of more efficient MCMC algorithms70 
that eliminate the clock assumption (allowing inde-
pendent branch lengths on unrooted trees) and the 
release of the program MrBayes71 made the method 
popular among molecular systematists. A more recent 
Bayesian implementation in the program BEAST72 uses 
the so-called relaxed-clock models to infer rooted trees 
even though the model allows substitution rates to vary 
across lineages (TABLE 1).
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Figure 3 | Long-branch attraction in theory and in practice. Panels a and b show the four-species case analysed 
by Felsenstein43. If the correct tree (T

1
 in a) has two long branches separated by a short internal branch, parsimony  

(as well as model-based methods such as likelihood and Bayesian methods under simplistic models) tends to recover a 
wrong tree (T

2
 in b), in which the two long branches are grouped together. Panels c and d show a similar phenomenon 

in a real data set, concerning the phylogeny of seed plants134. The Gnetales is a morphologically and ecologically 
diverse group of Gymnosperms including three genera (Ephedra, Gnetum and Welwitschia), but its phylogenetic 
position has been controversial. Maximum likelihood analysis of 56 chloroplast proteins produced the GneCup tree 
(d), in which the Gnetales are grouped with Cupressophyta, apparently owing to a long-branch attraction artefact. 
However, the Gnepine tree (c), in which the Gnetales joins the Pinaceae, was inferred by excluding the fastest-evolving 
18 proteins as well as three proteins (namely, psbC, rpl2 and rps7) that had experienced many parallel substitutions 
between the Cryptomeria branch and the branch ancestral to the Gnetales. The Gnepine tree (c) is also supported by 
two proteins from the nuclear genome and appears to be the correct tree. Branch lengths and bootstrap proportions 
are all calculated using RAxML. See REF. 134 for details.

Markov chain Monte Carlo 
algorithms
(MCMC algorithms). A Monte 
Carlo simulation is a computer 
simulation of a biological 
process using random 
numbers. An MCMC algorithm 
is a Monte Carlo simulation 
algorithm that generates  
a sample from a target 
distribution (often a Bayesian 
posterior distribution).

Bayesian inference relies on Bayes’s theorem, which 
states that

P(T,θ|D) = P(T,θ)P(D|T,θ)
P(D)

(2)

where P(T,θ) is the prior probability for tree T and 
parameter θ, P(D|T,θ) is the likelihood or probability 
of the data given the tree and parameter, and P(T,θ|D)  
is the posterior probability. The denominator P(D) is  
a normalizing constant, as its role is to ensure that 
P(T,θ|D) sums over the trees and integrates over the 
parameters to one. The theorem states that the posterior 
is proportional to the prior times the likelihood, or the  
posterior information is the prior information plus  
the data information.

In general, the posterior probabilities of trees can-
not be directly calculated. In particular, the normalizing 
constant P(D) involves high-dimensional integrals (over 
all possible parameter θ values) and summation over all 
possible trees. Instead, Bayesian phylogenetic inference 

relies on MCMC algorithms to generate a sample from 
the posterior distribution. This is illustrated in BOX 2. 
See Chapter 5 of REF. 24 for an introduction to MCMC.

Strengths and weaknesses of the Bayesian inference 
method. Both likelihood and Bayesian methods use 
the likelihood function and thus share many statistical 
properties, such as consistency and efficiency. However, 
maximum likelihood and Bayesian inference repre-
sent opposing philosophies of statistical inference. The 
same feature of Bayesian inference may thus be viewed 
as either a strength or a weakness, depending on one’s 
philosophy. See REF. 24 for a brief description of the con-
troversy. Here we comment on two issues relating to the 
interpretability of the results and to the practicalities of 
incorporating prior information in the model.

First, Bayesian statistics is known to answer the 
biological questions directly and yields results that are 
easy to interpret: the posterior probability of a tree is 
simply the probability that the tree is correct, given the 
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Clades
Groups of species that  
have descended from a 
common ancestor.

data and model. By contrast, concepts such as the confi-
dence interval in a likelihood analysis have a contrived 
interpretation that eludes many users of statistics. In 
phylogenetics, it has not been possible to define a con-
fidence interval for the tree. The widely used bootstrap 
method73 (BOX 3) has been difficult to interpret despite 
numerous efforts74–77. However, the odds are not entirely 
against maximum likelihood. Posterior probabilities for 
trees and clades that have been calculated from real data 
sets often appear to be too high66,78–80. In many analyses, 
nearly all nodes had posterior probabilities of ~100%. 
Posterior tree probabilities are also sensitive to model 
violations, and use of simplistic models may lead to 
inflated posterior probabilities81.

Second, the prior probability allows incorporation 
of a priori information about the trees or parameters. 
However, such information is rarely available, and 
specification of the prior is most often a burden on the  
user; almost all data analyses are conducted using 
the ‘default’ priors in the computer program. High-
dimensional priors are notoriously hard to specify, and 
an innocent-looking prior can have an undue and unex-
pected influence on the posterior. For example, it has 
recently been pointed out that the independent expo-
nential prior on branch lengths used by MrBayes can 
induce a strongly informative and unreasonable prior 
on the tree length, producing unreasonably long trees in 
some data sets82–84. It is therefore important to conduct 
Bayesian robustness analysis to assess the impact of the 
prior on the posterior estimates.

Statistical assessments of phylogenetic methods
The aim of phylogenetic inference is to estimate the tree 
topology and possibly also the branch lengths. Four 
criteria have been used to judge tree reconstruction  
methods.

Consistency. An estimation method is said to be consist-
ent if the estimate converges to the true parameter value 
when the amount of data approaches infinity. A tree  
reconstruction method is consistent if the estimated  
tree converges to the true tree when the number of sites 
in the sequence grows. Model-based methods (that is, 
distance matrix, maximum likelihood and Bayesian 
inference) are consistent if the assumed model is correct.  
Parsimony may be inconsistent under some model tree 
combinations; Felsenstein’s43 demonstration of this has 
spurred much heated discussion.

Efficiency. In the statistical estimation of a parameter, 
an unbiased estimate with a smaller variance is more 
efficient than one with a larger variance. In phylogenet-
ics, efficiency may be measured by the probability of 
recovering the correct tree or subtree given the number 
of sites. This can be estimated by computer simulation. 
The complexity of tree reconstruction means that the 
asymptotic theory of MLEs does not apply. Nevertheless, 
computer simulations have generally found a higher 
efficiency of maximum likelihood than maximum 
parsimony or neighbour joining in recovering the 
correct tree23.

Table 2 | A summary of strengths and weaknesses of different tree reconstruction methods

Strengths Weaknesses

Parsimony methods

•	Simplicity and intuitive appeal
•	The only framework appropriate for some data 

(such as SINES and LINES)

•	Assumptions are implicit and poorly understood
•	Lack of a model makes it nearly impossible to incorporate our 

knowledge of sequence evolution
•	Branch lengths are substantially underestimated when 

substitution rates are high
•	Maximum parsimony may suffer from long-branch attraction

Distance methods

•	Fast computational speed
•	Can be applied to any type of data as long as a 

genetic distance can be defined
•	Models for distance calculation can be chosen 

to fit data

•	Most distance methods, such as neighbour joining, do not 
consider variances of distance estimates

•	Distance calculation is problematic when sequences are 
divergent and involve many alignment gaps

•	Negative branch lengths are not meaningful

Likelihood methods

•	Can use complex substitution models to 
approach biological reality

•	Powerful framework for estimating parameters 
and testing hypotheses

•	Maximum likelihood iteration involves heavy computation
•	The topology is not a parameter so that it is difficult to apply 

maximum likelihood theory for its estimation. Bootstrap 
proportions are hard to interpret

Bayesian methods

•	Can use realistic substitution models, as in 
maximum likelihood

•	Prior probability allows the incorporation of 
information or expert knowledge

•	Posterior probabilities for trees and clades have 
easy interpretations

•	Markov chain Monte Carlo (MCMC) involves heavy computation
•	In large data sets, MCMC convergence and mixing problems can 

be hard to identify or rectify
•	Uninformative prior probabilities may be difficult to specify. 

Multidimensional priors may have undue influence on the 
posterior without the investigator’s knowledge

•	Posterior probabilities often appear too high
•	Model selection involves challenging computation138,139
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Graphical processing units
(GPU). Specialized units that 
are traditionally used to 
manipulate output on a video 
display and have recently been 
explored for use in parallel 
computation.

Robustness. A method is robust if it gives correct 
answers even when its assumptions are violated. Some 
assumptions matter more than others. With the rapid 
accumulation of sequence data, sampling errors in tree 
reconstruction are considerably reduced, so system-
atic errors or robustness of the method become more 
important.

Computational speed. This property is easy to assess. 
Neighbour joining uses a cluster algorithm to arrive 
at a tree and is very fast. Methods that search for the 
best tree under a criterion, such as maximum evo-
lution, maximum parsimony and maximum likeli-
hood, are slower. The computational speed of the 
Bayesian method depends on the length of the chain 
(generated by MCMC algorithms), which is highly 

data-dependent. As calculation of the phylogenetic 
likelihood is expensive, maximum likelihood and 
Bayesian inference are typically slower than maxi-
mum parsimony. Nevertheless, considerable advance-
ments in computational algorithms53–55 have made 
likelihood-based methods feasible for the analysis of 
large data sets. Algorithms that take advantage of new 
computers with multicore processors and graphical 
processing units (GPUs)85,86 are pushing the boundary 
even further.

Phylogenomic analysis of large data sets
With the advent of new sequencing technologies and 
the completion of various genome projects, phylo-
genetics has entered the era of genome-scale data sets. 
Here we discuss a few issues relating to the analysis of 
such large data sets.

Supertree and supermatrix approaches.  Two 
approaches have been advocated for the phylogenetic 
analysis of hundreds or thousands of genes or proteins, 
especially when some loci are missing in some spe-
cies. The supertree approach separately analyses each 
gene and then uses heuristic algorithms to assemble 
the subtrees for individual genes into a supertree for 
all species87. The separate analysis is useful for study-
ing the differences in the reconstructed subtrees or the 
prevalence of horizontal gene transfer. However, it is 
inefficient for estimating a common phylogeny that 
underlies all genes.

In the supermatrix approach, sequences for multiple 
genes are concatenated to generate a data supermatrix, in 
which missing data are replaced by question marks, and 
the supermatrix is then used for tree reconstruction88.  
Most supermatrix analyses ignore differences in evolu-
tionary dynamics among the genes. Note that a super-
matrix analysis that assumes different evolutionary 
models and different trees and branch lengths for the 
genes is equivalent to a separate or supertree analy-
sis. When a common tree underlies all genes, the ideal 
approach should be a combined (supermatrix) analysis of  
all genes, using the likelihood to accommodate the among-
gene heterogeneity in the evolutionary process89–91. Our  
comments below relate to this combined approach.

Impact of missing data. Many genomic data sets are 
highly incomplete, and so most cells in the species by 
gene matrix will be empty. Although, in theory, the likeli-
hood function (in the maximum likelihood and Bayesian 
methods) can properly accommodate missing data23,24, 
the impact of such large-scale missing data and align-
ment gaps is not well-understood. Simulations suggest 
that maximum likelihood and Bayesian inference gener-
ally perform better than neighbour joining or maximum 
parsimony in dealing with missing data, and Bayesian 
inference was found to perform the best92–94. The poor 
performance of neighbour joining may be understood 
if one considers extreme cases in which, after removal 
of alignment gaps, the pairwise distances are calculated 
from different sets of genes or sites, some of which are 
fast-evolving, whereas others are slowly evolving.

Box 2 | Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a simulation algorithm in which one moves 
from one tree (or parameter value) to another and, in the long run, visits the trees  
(or parameters) in proportion to their posterior probabilities. The tree parameter set 
(T,θ) constitutes the state of the algorithm. Here, parameters θ may include the 
branch lengths of the tree and parameters in the evolutionary model, such as  
the transition/transversion rate ratio. The following scheme demonstrates the main 
features of MCMC algorithms.

Step 1. Initialization. Choose a starting tree and starting parameters at random (T,θ).

Step 2. Main loop.
•	Step 2a. Proposal to change the tree T. Propose a new tree, T*, by changing the 

current tree, T. If T* has higher posterior probability than the current tree,  
P(T*,θ|D) > P(T,θ|D), accept the new tree T*. Otherwise, accept T* with probability:

= (3)
P(T*,θ|D)

P(T,θ|D)

P(T*,θ)P(D|T*,θ)

P(T,θ)P(D|T,θ)

If T* is accepted, set T = T*.
•	Step 2b. Proposal to change parameters θ. Propose new parameter value, θ*, by 

changing the current θ. Here, for simplicity, we assume that the proposals are 
symmetrical so that the probability of proposing θ* from θ equals the probability of 
proposing θ from θ*. If P(T,θ*|D) > P(T,θ|D), accept new θ*. Otherwise, accept θ*  
with probability:

= (4)
P(T,θ*|D)

P(T,θ|D)

P(T,θ*)P(D|T,θ*)

P(T,θ)P(D|T,θ)

If the new θ* is accepted, set θ = θ*.
•	Step 2c. Sample from the chain. Print out (T,θ).

Note that first the algorithm does not need calculation of the normalizing constant 
P(D), as it cancels in the posterior ratios in proposal steps 2a and 2b. Second, in the 
long run, a tree parameter set (T

1
,θ

1
) will be visited more often by the algorithm than 

another set (T
2
,θ

2
) if its posterior probability is higher: P(T

1
,θ

1
|D) > P(T

2
,θ

2
|D). Indeed, 

the expected proportion of time that the algorithm spends in any tree T is exactly  
its posterior probability: P(T|D). Thus, by counting the frequencies at which each tree 
is visited in the algorithm, we get an MCMC estimate of the posterior probabilities 
for the trees.

The sequence (or chain) of values for (T,θ) generated by the algorithm has the 
property that, given the current state (T,θ), the probabilities by which it moves to new 
states do not depend on past states. This memory-less property is known as the 
Markovian property, which states that given the present, the future does not depend 
on the past. The generated sequence is called a Markov chain. The algorithm is  
called Markov chain Monte Carlo because the Markov chain is generated by Monte 
Carlo simulation.
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Box 3 | Sampling error in the estimated tree and bootstrap analysis

In traditional parameter estimation, we attach a confidence interval to indicate the uncertainty involved in the point 
estimate of the parameter. This has not been possible in molecular phylogenetics, as concepts such as the variance and 
confidence interval are not meaningful when applied to trees. For distance, parsimony and likelihood methods, the 
most commonly used procedure to assess the confidence in a tree topology estimate is the bootstrap analysis73. In this 
approach, the sites in the sequence alignment are resampled with replacement as many times as the sequence length, 
generating a bootstrap pseudo-sample that is of the same size as the original data set. Typically, 100 or 1,000 bootstrap 
samples are generated in this way, and each one is analysed in the same way as the original sequence alignment. An 
example that uses the maximum likelihood method is illustrated in the figure. The inferred trees from those bootstrap 
samples are then tabulated to calculate the bootstrap support values. For every clade in the estimated tree, its 
bootstrap support value is simply the proportion of bootstrap trees that include that clade24,65,133. The commonly used 
but less satisfactory approach is to use the bootstrap trees to generate a majority-rule consensus tree, which shows a 
clade if — and only if — it occurs in more than half of the bootstrap trees.

Importance of systematic errors. In the analysis of very 
large data sets, almost all bootstrap support values or 
Bayesian posterior probabilities are calculated to be 
100%, even though the inferred phylogenies might  
be conflicting across genes or might depend on the 
method and model used47. Systematic biases are thus 
much more important than random sampling errors in 
such analyses, and methods that are robust to violations 
of model assumptions, even if they are less efficient, 
should be preferable.

Data-partitioning strategies. The rationale for data 
partitioning is to group genes or sites with similar 
evolutionary characteristics into the same partition so 
that all sites in the same partition are described using 
the same model, and different partitions use different 
models89,90. Partitioning too finely increases computa-
tion time and can cause over-fitting, but partitioning 
too coarsely may lead to under-fitting or model vio-
lation. However, the situation is complicated, as some 
models instead allow random variation among sites in 
substitution rate31,56,61, in amino acid frequencies57,58,95 or 
in the pattern of substitution96. Such mixture models use 
a statistical distribution to accommodate the among-
site heterogeneity without data partitioning. Often, the 
choice between using partition or mixture models is a 
philosophical one: it corresponds, respectively, to the 
preference for fixed-effects models or random-effects 
models in statistics.

Current strategies for data partitioning include 
partitioning genes according to their relative substitu-
tion rates97 and separating the three codon positions in 
coding genes into different partitions89. The likelihood 
ratio test has also been used to decide whether two genes 
should be in the same or different partitions98. In sum-
mary, data partitioning is more of an art than a science, 
and it should rely on our knowledge of the biological sys-
tem: for example, on whether it is reasonable to assume 
that the same phylogeny underlies all genes.

Perspectives
We focus here on three research areas that are currently 
the focus of much methodological development. The 
first is multiple sequence alignment. Many heuristic 
methods and programs for aligning sequences exist99,100, 
and improved algorithms continue to appear101,102. 
Efforts have also been taken to infer alignment statis-
tically under an explicit model of insertions and dele-
tions103,104 and to infer alignment and phylogeny jointly 
in a Bayesian framework105,106. An advantage of those 
model-based alignment methods is that they produce 
estimates of insertion and deletion rates. For now, those 
algorithms are based on simplistic insertion–deletion 
models and involve heavy computation, and so they 
do not compare favourably against good heuristic algo-
rithms either in computational efficiency or alignment 
quality. Nevertheless, they are biologically appealing, 
and improvements are very likely.
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The second area of development is molecular clock 
estimation of divergence dates. Under the clock assump-
tion, the distance between sequences increases linearly 
with the time of divergence, and if a particular diver-
gence can be assigned an absolute geological age based 
on the fossil record, the substitution rate can be cal-
culated, and all divergences on the tree can be dated. 
Similar ideas can be used to estimate divergence times 
of viral strains when sample dates for viral sequences are 
available and act as calibrations. However, in practice, the 
molecular clock may be violated, especially for distantly 
related species, and the fossil record can never provide 
unambiguous times of lineage divergence. In the past 
several years, advancements have been made using the  
Bayesian framework to deal with those issues. Since  
the pioneering work of Thorne and colleagues107,108, 
models of evolutionary rate drift over time have been 
developed to relax the molecular clock72,109. Soft age 
bounds and flexible probability distributions have been 
implemented to accommodate uncertainties in fossil 
calibrations72,110,111. The fossil record (that is, the presence 
and absence of fossils in the rock layers) has also been 
statistically analysed to generate calibration densities for 
molecular dating analysis112,113.

The third area of exciting development, which was 
mentioned at the beginning of this Review, is statistical 
phylogeography20,114–116. The availability of genomic data 
at species and population levels offers unprecedented 

opportunities for addressing interesting questions in 
evolutionary biology. Multi-locus sequence data can 
be used to estimate divergence times between closely 
related species and the sizes of both extant and extinct 
populations117,118 to infer population demographic 
changes and to estimate migration patterns and 
rates119,120. Such data can also be used to delimit spe-
cies (that is, to determine whether a population con-
sists of one or two species, for example)121,122. The past 
few years have seen the appearance of many individual 
genome sequences and the rise of population genomics.  
Currently, the data are mostly from humans and their 
close relatives, but genomes from other species are 
being sequenced as well, such as mastodons and mam-
moths123 and the bacterium Yersinia pestis from Black  
Death victims124. Genomic sequence data from humans 
and apes are used to infer the species divergence times 
and to test for possible hybridization during the 
human–chimpanzee separation125–131. Comparison of 
a few human individual genomes provides insights 
into the recent demographic history of our species12,13, 
whereas sequencing of the Neanderthal genome allows 
estimation of the Neanderthal contribution to the 
genome of modern humans11,132. The size of the data and  
the complexity of the model pose great statistical  
and computational challenges. Again, Bayesian MCMC 
algorithms, under the multi-species coalescent model118, 
provide the natural framework for inference.
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