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Abstract
A priori selection of models for use in phylogeny estimation from molecular sequence data is increasingly important as the
number and complexity of available models increases. The Bayesian information criterion (BIC) and the derivative decision-
theoretic (DT) approaches rely on a conservative approximation to estimate the posterior probability of a given model. Here,
we extended the DT method by using reversible jump Markov chain Monte Carlo approaches to directly estimate model
probabilities for an extended candidate pool of all 406 special cases of the general time reversible + Γ family. We analyzed
250 diverse data sets in order to evaluate the effectiveness of the BIC approximation for model selection under the BIC and
DT approaches. Model choice under DT differed between the BIC approximation and direct estimationmethods for 45% of
the data sets (113/250), and differingmodel choice resulted in significantlydifferent sets of trees in the posterior distributions
for 26% of the data sets (64/250). The model with the lowest BIC score differed from the model with the highest posterior
probability in 30% of the data sets (76/250). When the data indicate a clear model preference, the BIC approximation works
well enough to result in the samemodel selection as with directly estimatedmodel probabilities, but a substantial proportion
of biological data sets lack this characteristic, which leads to selection of underparametrized models.
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Introduction
Likelihood-based phylogenetic approaches have come to
dominate systematic biology and are applied to an in-
creasing array of evolutionary questions. Over the past four
decades, the set of candidatemodels has grown froma small
handful of named models such as F81 (Felsenstein 1981)
and TrN (Tamura and Nei 1993) to a combinatorial explo-
sion of thousands, which has motivated the developmentof
formalized model selection methods. Goodness-of-fit tests
(Goldman 1993; Bollback 2002) can recognize models that
do not adequately fit data, but model rejection is of limited
use when considering many candidate models because
many candidatemodels may remain after rejecting a subset
of the candidates (Ripplinger and Sullivan Forthcoming).
Furthermore, the issues of identifyingoptimalmodel fit and
identifying an adequate model for inferring phylogenies
are separate issues (Steel 2005; Sullivan and Joyce 2005).
Specifically, models selected for inferring phylogenies
should be sufficiently complex to capture historical signal
in the sequence data; the decision-theoretic (DT) approach
of Minin et al. (2003) directly addresses this point. Initial
statistical attempts at model selection for phylogeny esti-
mation relied on iterated hierarchical likelihood ratio tests
(hLRTs; Huelsenbeck and Bull 1996; Frati et al. 1997; Sullivan
et al. 1997), typically using the ModelTest program (Posada
and Crandall 1998). However, hLRTs cannot compare
nonnested models; the Akaike information criterion (AIC)
(Akaike 1974), the Bayesian information criterion (BIC)
(Schwarz 1978), and the DT approach solve this problem

byavoidingdirectmodel comparisons in anycomputational
step prior to final model ranking.

Both the BIC and DT approaches rely on a conservative
approximation to computemodel probabilities. Specifically,
they use a diffuse prior centered on a maximum likelihood
(ML) estimate and two terms of a Taylor-series expansion
(Raftery 1995). The nature of the BIC’s assumed prior is
of particular import in the context of this study because
it does not remotely correspond to the priors applied for
the Markov chain Monte Carlo (MCMC)-based direct es-
timates. The BIC’s diffuse prior tends to make it conserva-
tive with regard to model complexity (Raftery 1999), even
compared with the “uninformative” priors often used for
Bayesian MCMC analyses.

DT model selection measures relative performance of
all pairs of candidate models and minimizes the risk due
to poor model choice in the context of all possible choices
and outcomes. Conceptually, DT methods do not strive
to choose the absolute best-fit model; rather, DT methods
minimize the risk of choosing a model that performs poorly
relative to all the other candidates. Suppose that there are
three models to choose among. Risk can be calculated for
each model choice by summing the conditional costs of
the possible outcomes. In the matrix below, CAB P (OB |A )
is the cost of choosing model A when model B was
the best choice (CAB ), times the conditional probability
that B was the best choice (P (OB |A )), which is propor-
tional to its posterior probability. This results in a matrix
from which risks can be computed for each possible choice.
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OutcomeA Outcome B Outcome C Risk
Choice A CAA P (OA |A) CAB P (OB |A) CAC P (OC |A) ∑C

i=A CAi P (Oi |A)
Choice B CBA P (OA |B ) CBB P (OB |B ) CBC P (OC |B )

∑C
i=A CBi P (Oi |B )

Choice C CCA P (OA |C) CCB P (OB |C) CCC P (OC |C)
∑C

i=A CCi P (Oi |C)

Choosing themodel with the lowest risk is fundamentally
different than choosing the optimal model under some op-
timality criterion because the choice directly takes into ac-
count all candidate models.

Berry and Gascuel (1996) and Holder et al. (2008) ap-
plied decision theory to provide justification for consensus
trees derived from nonparametric bootstrap and Bayesian
posterior distributions, respectively. Minin et al. (2003) and
Abdo et al. (2004) applied decision theory to model selec-
tion based on the risk function

Ri =
m∑
j=1

‖B̂i − B̂j‖P (Mj |D ), (1)

where ‖B̂i − B̂j‖ is the Euclidean distance between branch
length vectors estimated under models i and j for a fixed
topology, and P (Mj |D ) is the probability of model j given
the data. Thus, the performance criterion penalizes branch
length estimation error. In the aforementioned previous
studies, model probabilitieswere approximated

Ri ≈
m∑
j=1

‖B̂i − B̂j‖ e−BICi /2∑m
k=1 e

−BICk /2
. (2)

The approximation forP (Mj|D ) is basedon theBIC (Raftery
1995), where BICi = −2 ln L + Ki ln n ; ln L is the max-
imum log-likelihood of a fixed tree topology with branch
lengths optimized under model i , Ki is the number of free
parameters inmodel i , and n is the sample size (assumed to
be the number of characters for lack of an obvious value).
The summations are acrossm candidate models.

Suchard et al. (2001) first applied reversible jumpMCMC
to choosing among a small set of substitution models,
and Huelsenbeck et al. (2004) demonstrated that MCMC
(Metropolis et al. 1953; Hastings 1970)with reversiblemodel
jumps (Green 1995) can be used to estimate posterior
model probabilities (e.g., the rightmost term in eq. 1) for all
203 special cases of the general time reversible (GTR) model
(Yang 1994a). In the most general case, the GTR model al-
lows for unequal nucleotide base frequencies (πA, πC, πG,
and πT) and unequal substitution rates (α, β, γ , δ, ε, and
η), which are used to form a stochastic matrix that is of the
form:

From\To A C G T
A — πCα πGβ πTγ
C πAα — πGδ πT ε
G πAβ πCδ — πTη
T πAγ πC ε πGη —

The relative mutation rate parameters can be con-
strained to form simplermodels. For example, settingβ = ε
and α = γ = δ = η reduces the mutation rate param-
eters from five free parameters to one and happens to be
one of the named models, Hasegawa–Kishino–Yano (HKY;
Hasegawa et al. 1985).

In this study, we further extended the set of candidate
models from 203 to 406 by developing an MCMC proposal
to sample among models with and without Γ -distributed
among-site mutation rate variation. We adapted the DT
model selection methods of Minin et al. (2003) to evaluate
the 406 GTR + Γ models and computed model probabil-
ities using both the approximate method and the MCMC
estimationmethod. We analyzed the 250 diverse TreeBASE
(http://www.treebase.org/) data sets selected by Ripplinger
and Sullivan (2008) to gain insight into the extent that ap-
proximatingmodel probabilities impacts model selection.

Methods
Model Selection
For each of the 250 aligned data sets selected by Ripplinger
and Sullivan (2008), we used PAUP* (Swofford 2002) to
compute pairwise paralinear (LogDet) distances (Lake 1994;
Lockhart et al. 1994), generated a neighbor joining (NJ)
tree (Saitou and Nei 1987; Studier and Keppler 1988), op-
timized branch lengths for each of the 406 GTR+Γ -family
models and computed the model-specific maximum log-
likelihoods. We used the branch lengths to compute Eu-
clidean distances between models and the log-likelihoods
to approximatemodel probabilities (eq. 2).

Markov Chain Monte Carlo
In order to estimate the model probabilities necessary
for equation 1, we extended Crux (Evans 2009) to uti-
lize reversible jump MCMC for sampling among the 406
GTR+Γ -familymodels.Weused theproposal developedby
Huelsenbeck et al. (2004) to sample among the 203 GTR-
family models. However, rather than using Dirichlet priors
and multivariate proposals for mutation rates (and state
frequencies), we used normalized independent exponential
priors and updated the rates individually, as suggested by
Lewis et al. (2005). This approach has the same effect but
avoids the need for multivariate proposals. State frequen-
cies were allowed to vary for all experiments.
Γ -distributed among-site mutation rate variation is

commonly approximated using discrete rate categories
(Yang 1994b), and we used eight categories. Rather than di-
rectly using the shape parameter (α) to parametrize the Γ
distribution, we used an exponential prior on ω = 1/α,
as suggested by Lewis et al. (2005). This has the advantage
of allowing α = ∞ (no Γ -distributed among-site rate
variation), which is particularly relevant to sampling among
models with/without+Γ . We developedMCMC proposals
to add/remove +Γ that, while straightforward, are to our
knowledge original, so we provide the derivations in the
Appendix.

Polytomies
Restricting consideration to fully resolved trees has been
shown to negatively impact Bayesian approaches due to
the star tree paradox (Suzuki et al. 2002; Cummings et al.
2003; Lewis et al. 2005). The star tree paradox applies to
any MCMC analysis that considers only fully resolved trees
for data that lack adequate support to resolve one or more
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polytomies. Minor stochastic variations in the data can
cause one resolution of such polytomies to be strongly fa-
vored over the others, thus misleading the researcher to
conclude that the phantom branches are well supported.
To avoid any potential artifacts stemming from the star tree
paradox in estimates of model probabilities, we used the
polytomy proposals for sampling polytomous trees devel-
oped by Lewis et al. (2005), as well as the branch length
change proposal, which modifies the length of a single
branch using a log-scaled sliding window. We also used a
generalization (Evans and Sullivan Forthcoming) of the ex-
tending tree bisection and reconnectionproposal described
by Lakner et al. (2008). This approach allowsbranch-count–
preserving topology transformations to any (nonstar) tree,
including polytomous trees and resolved four-taxon trees,
which improves mixing for large data sets (Evans and Sulli-
van Forthcoming).

Priors
We used a flat polytomy prior, which means that each res-
olution class (trees in each class have the same number of
internal branches) is equally likely (Lewis et al. 2005). Trees
within each resolution class were assumed to be equally
likely. Similarly, we assumed a flat prior for the 203 GTR-
family models, and a flat prior for models with versus with-
out Γ -distributed among-site rate variation. For models
with Γ -distributed rates, we used an exponential (λ = 1)
prior for 1/α. We assigned branch lengths an exponential
(λ = 10) prior.

Convergence
We used the R̂coverage online convergence diagnostic to au-
tomatically terminate analyses once enough samples were
available and the diagnostic indicated convergence (Brooks
and Gelman 1998, p. 441). Givenmultiple independent runs
as inputs, R̂coverage erects a (1 − α) credibility interval for
each run, computes the proportion of the pooled samples
that is covered, and averages the per interval coverages.
When the average coverage comeswithin some εof (1−α),
we consider the runs to have converged. For each analysis,
we executed two independent runs using random fully re-
solved starting trees for a minimum of 5 million steps each,
discarded the first half of each run as burn-in, sampled every
1,000 steps thereafter, and used R̂coverage on the ln L values
withα = 0.05 and ε = 0.01.

Because we were mainly interested in the distribution of
model frequencies, we also applied a more rigorous post
hoc convergence analysis to verify model frequency conver-
gence.We used R̂coverage here as well, also withα = 0.05 and
ε = 0.01, but we erected each credibility “interval” by taking
the first 95% of the distribution in frequency-ordered sam-
ple histograms. That is, for eachdistribution,we counted the
number of times eachmodel was sampled, ranked themod-
els from most to least sampled, then extracted the models
that accounted for the top 95% of samples. We used this
diagnostic to verify that independentMCMC runs sampled
primarily from the same set of models. Note that the num-
ber of models in the 95% credibility interval is a useful in-

Table 1. KP(M |D) versus KBIC (pairwise model choice parameter
counts) for 250 Data Sets. The BIC Tended to Choose Slightly Sim-
pler Models, as Evidenced by a Disproportionately Large Number of
Data Sets below the Diagonal.

KBIC

KP(M|||D) 3 4 5 6 7 8 9

3
4 1 1
5 7 27 2
6 3 18 63 6
7 4 18 67 3
8 2 9 17
9 1 1

dication of information content within the sequence align-
ment; a large number of models indicates low information
content.

Metropolis Coupling
All of our MCMC analyses were performed using four
Metropolis-coupled chains (Geyer 1991) per independent
run. Metropolis coupling is a convenient method for par-
allel sampling, and it tends to guard against entrapment at
local optima during sampling. To decrease program execu-
tion times, we distributed each analysis across 8–64 com-
puter processors on a 512-node Beowulf cluster using a
combination of the Open Message Passing Interface library
(http://www.open-mpi.org/) and multithreading, based in
part on the methods developed by Altekar et al. (2004).

Results
Assuming uniform priors across models, if the BIC approx-
imation is sufficient, the model with the best BIC score is
expected to be that with the highest posterior probability.
This was the case for 70% of the data sets (174/250; table 1).
In most cases, where there was a difference between the
model with the highest probability and the one with the
best BIC score, the BIC-favored model was simpler; for 54
data sets, the BICmodel had only one fewer parameters. For
12 data sets, the BIC selected amodel with onemore param-
eter than the model with the highest posterior probability.

The BIC approximation versus direct estimation DT
methods for computing model probabilities resulted in dif-
fering model choice for 45% of the data sets (113/250).
The number of parameters chosen by the approximation
method (Kapprox) averaged 6.32. The number of parameters
chosen by the estimation method (Kestim) was somewhat
higher at 6.75. Table 2 depicts the pairwisemodel choice pa-
rameter counts. The direct estimation method chose com-
paratively simpler models for only 13 data sets, whereas the
approximate method chose comparatively simpler models
for 83 data sets.

Figure 1 shows pairwise risk plots for six of the data sets
analyzed. For all the data plots shown, the model selection
methods chose differentmodels, though for data set 47, the
methods closely agreed on model risks. The plots shown are
a broad sampling of varied patterns; most of the 250 plots
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Table 2. Kestim versus Kapprox (pairwise model choice parameter
counts) for 250 Data Sets. The Estimation Method Tended to
Choose Slightly more Parameter-Rich Models, as Evidenced by a
Disproportionately Large Number of Data Sets below theDiagonal.

Kapprox

Kestim 3 4 5 6 7 8 9

3
4 1
5 19 1
6 1 2 16 47 5
7 2 10 28 65 7
8 1 3 4 12 21
9 1 3 1

lookmuch like those for data sets 47 or 211. Data set 128 ex-
hibits a common pattern, wherein the+Γ models all have
much lower risk than any of the models that lack +Γ . For
data set 153 (and to a lesser extent data set 28), the approx-
imate method strongly prefers models lacking+Γ , and the
estimation method strongly prefers +Γ models. For data
set 93, the approximate method computes more scattered
risks than does the estimationmethod.

Analysis
We looked for relationships between parameter richness
and various other statistics that could elucidate the dif-
ferences in model choices for the two methods, such as
the number of taxa, number of characters, and number of
unique site patterns. The only obvious correspondence was
with the size of the frequency-ordered 95% credible set of
models sampled via MCMC. To compute the credible set
for each MCMC analysis, we counted the number of times
each model was sampled, ranked the models from most to
least sampled, then counted the number of models that
accounted for the top 95% of samples. In cases where the
model selection methods chose the same model, the 95%
credible sets averaged only 10.99 (of 406) versus 22.67where
the model choice differed.

In cases where DT model selection chose different mod-
els depending on the use of approximate versus estimated
model probabilities, we performed paired MCMC analyses
that were configured as described earlier except that the
rate classes and +Γ (or not) were fixed according to the
two differentmodels chosen.We compared the sample dis-
tributions from the paired analyses in the following man-
ner. We first needed to represent the tree distributions in a
manner amenable to statistical analysis. Therefore, we fol-
lowed (Carstens et al. 2004) by computing the Robinson–
Foulds distance (RF distance; Robinson and Foulds 1981;
Moret et al. 2004) between theNJ tree generated for the BIC
approximation method (i.e., a reasonable anchor tree) and
every tree in each sample.We then used a two-sided pooled
t -test at the α = 0.05 level to test whether the samples
could have been drawn from the same underlying tree dis-
tribution. This is aweak test fordetectingdifferences in sam-
ples because RF distances do not indicate direction within
tree space, but when RF distance distributions do differ, it
is a clear indication that the tree samples were drawn from

FIG. 1. Approximate versus estimated risk plots.Model choice differed
for all the data sets shown, though just barely for data set 47. Many of
the plots look much like that for data set 47, sometimes with a gap
along the diagonal between+Γ and non-+Γ models.

distinct distributions. According to this test, at least 57% of
the tree distributions (64/113) differed significantly. In the
larger context of all 250 data sets, thismeans that the model
selectionmethods resulted in significantlydifferent tree dis-
tributions for at least 26% of the data sets.

This is an important result because it shows that anal-
yses based on the BIC approximation DT method failed to
achieve results indistinguishable from those of the more rig-
orous direct estimation DT method for over a quarter of
all the data sets analyzed. For these data sets, Ripplinger
and Sullivan(2008) used parametric bootstrap tests to show
that ML trees estimated under even more strongly differ-
ent models (e.g., GTR + I + Γ vs. HKY + Γ ) are rarely sig-
nificantly different. In the tests reported here, we examined
distributions of trees rather than point estimates. Although
the point estimates (i.e., ML trees) do not differ significantly
(Ripplinger and Sullivan 2008), the posterior distributions
for different models are not drawn from the same under-
lying distributions of topologies. The effect that this would
have onmacroevolutionary inferences that account forphy-
logenetic uncertainty by sampling from the posterior distri-
bution (e.g., biogeographic reconstructions; Nylander et al.
2008) is beyond the scope of this paper.
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Discussion
Our experiments clearly show that approximating model
probabilities for DT model selection impacts results, often
causing underparametrizedmodels to be chosen. If the un-
derparametrization were simply caused by BIC-based ap-
proximation overpenalizing model complexity, it might be
feasible to determine a more refined penalization term, but
there appears to be no such simple solution.

In this study, we chose among 406 GTR+Γ -family mod-
els, whereas DT-ModSel only considers 56 of the 812 GTR+
I + Γ -family models. This makes direct comparisons to
the original model selection experiments of Ripplinger and
Sullivan (2008) of limited use, but we note with interest that
for the 250 data sets studied, DT-ModSel chosemodels with
an average of 6.7 parameters, which is higher than the 6.32
our approximation-based implementation averaged. There
are two reasons for this: 1) DT-ModSel can choose models
with a maximum of ten parameters versus nine for our im-
plementation and 2) our implementation offers the full set
of rate class choices, so the most parameter-rich models are
rarely chosen.

Direct estimation of model probabilities is a promising
avenue for improving model-based phylogeny estimation.
Current approximation approaches (BIC and DT) perform
rather well on average, especially when there is much in-
formation in the data with respect to model preference.
They either select the same models as the direct estimates
(55% for DT; 70% for BIC) or they select a model that is
very close, usually simpler by a single parameter. However,
when the differentmodels are used to sample the posterior
distribution of topologies, the distributions are sometimes
statistically different. We have not assessed the biological
significance of the different distributions, but work by
Ripplinger and Sullivan (2008) suggests that it may be
small.

Nevertheless, because not all data sets exhibit strong
preference across models, the uncertainty associated with
model choice could be accommodated in phylogeny esti-
mation through model averaging (e.g., Posada and Buckley
2004; Sullivan and Joyce 2005). Reversible jump MCMC
is perhaps the best justified approach for doing so (e.g.,
Huelsenbeck et al. 2004), and this can be accomplished in
the simple manner used here or by using mixture models
(Pagel andMeade 2004; Evans and Sullivan Forthcoming).
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Appendix
In this appendix, we describe MCMC proposals that are to
our knowledge original. As applied to phylogenetic infer-
ence, each sample in a Markov chain is a super parameter τ
that includes tree topology, branch lengths, mutation rates,
etc. Each proposed state τ ′ is based on τ and is accepted
with probabilityαm(τ , τ

′) according to the proposal ratio

αm(τ , τ
′) = min

{
1,
L (τ ′)π(τ ′)
L (τ)π(τ)

· jm(τ
′)

jm(τ)

· g
′
m(u

′)
gm(u)

·
∣∣∣∣∂(τ

′, u ′)
∂(τ ,u)

∣∣∣∣
}
, (3)

where L (τ)π(τ) is the likelihood of state τ times its prior
probability, jm(τ) is the probability of choosing move m
when in state τ , gm(u) is the density transformation for the

vector u of random variables, and
∣∣∣∂(τ′ ,u ′)∂(τ ,u)

∣∣∣ is the Jacobian
that accounts for change of variables from (τ , u) to (τ ′, u ′)
(Green 2003). If the proposed state change is rejected, then
the current τ is preserved, which results in sequential chain
samples that are identical. In the limit, the Markov chain
converges on the stationary distribution.

Γ -distributed Rate Model Jumps
Sampling among models both with and without Γ -
distributed mutation rates requires a pair of dimension-
changing proposals, one proposal for adding +Γ to the
model and the other proposal for removing +Γ from the
model. In the following derivations, we assume that the
probability of proposing a +Γ model jump remains con-
stant, regardless of whether+Γ is being added or removed.
If this assumption were relaxed, jm(τ) and jm(τ ′)would not
cancel. In practice, maintaining such balance between such
paired proposals simplifies implementation and has no ob-
vious disadvantages.

Recall that ω = 1/α is exponentially distributed, where
α is theΓ shape parameter. Therefore, the prior density for
ω is π(ω) = θω e−θωω , where the expected value of ω is
E (ω) = 1/θω . We assign a prior probabilityπ+Γ to models
that incorporate Γ -distributed rates, which leads to W =
(1 − π+Γ )/π+Γ . 0 < W < 1 favors+Γ models,W = 1
indicates a flat prior, andW > 1 discriminates against+Γ
models.

Add+Γ
Proposing the addition of +Γ to a model requires genera-
tion of the inverse shape parameter, ω′ = x/θω . The den-
sity transformation is gm(x) = e−x , where x = − ln(1−u)
is an auxiliary variable that is used to draw x ∼ Exp(1) ran-
dom numbers, and u ∼ Unif[0, 1) is easily computer gener-
ated. The prior density for ω′ is

π(ω′) = θω e
−θωω′ = θω e

−θω
(

1
θω

x
)
= θω e

−x . (4)
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So, the prior ratio is

π(τ ′)
π(τ)

=
π+Γπ(ω

′)
(1− π+Γ ) =

1

W
θω e

−x . (5)

The Jacobian that accounts for change of variables from x
to ω′ is

∂ω′

∂x
=
∂

∂x

1

θω
x =

1

θω
. (6)

The resultingproposal ratio (ignoring the likelihood ratio) is

π(τ ′)
π(τ)

· jm(τ
′)

jm(τ)
· g
′
m(x

′)
gm(x)

·
∣∣∣∣∂ω

′

∂x

∣∣∣∣
=

1

W
θωe

−x · 1 · 1

e−x
· 1

θω
=

1

W
. (7)

Remove+Γ
Proposing the removal of+Γ from amodel simply involves
computing the proposal ratio such that it is consistentwith
the +Γ addition proposal. Therefore, x ′ = θωω, and the
density transformation on x ′ is g ′m(x

′) = e−θωω . The prior
ratio is

(1− π+Γ )
π+Γπ(ω)

= W
1

θω e−θωω
. (8)

The Jacobian that accounts for change of variables from ω
to x ′ is

∂x ′

∂ω
=
∂

∂ω
θωω = θω . (9)

The resulting proposal ratio (ignoring the likelihood ra-
tio) is

π(τ ′)
π(τ)

· jm(τ
′)

jm(τ)
· g
′
m(x

′)
gm(x)

·
∣∣∣∣∂x

′

∂ω

∣∣∣∣
= W

1

θω e−θωω
· 1 · e

−θωω

1
· θω = W . (10)
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