
As a part of evolutionary theory, co‑evolution is essential 
for understanding living systems. In its simplest definition, 
co‑evolution refers to the coordinated changes that occur 
in pairs of organisms or biomolecules, typically to main‑
tain or to refine functional interactions between those 
pairs. Darwin himself initiated the study of co‑evolution,  
and his observation on the relationship between the size 
of orchids’ corollae and the length of the proboscis of pol‑
linators led him to predict successfully the existence of a 
new species that was able to suck from the large spur of 
Darwin’s orchid. The studies of Dobzhansky1 and others2 
contributed to the establishment of this concept in genetic 
terms, although the term co‑evolution is usually attrib‑
uted to Ehrlich3, and it is commonly defined as ‘reciprocal  
evolutionary change in interacting species’4.

For the past 20 years, much effort has been dedicated 
to investigating co‑evolution at the molecular level. In 
a classical study, coordinated sequence changes among 
genes (and their protein products) were proposed to be 
essential to optimize physiological performance and 
reproductive success5, thus indicating that molecular 
co‑evolution could be an important and widespread 
determinant of fitness.

Much progress has been made in the development 
of computational tools for the detection of molecular 
co‑evolution. Although co‑evolution can potentially 
occur between various biomolecules, most recent tools 
focus on protein co‑evolution. These can be broadly 
divided into those methods that search for co‑evolution 
at the amino acid residue level and those that search at 
the protein level, all of which are based on principles of 
molecular phylogenetics.

Tools at the residue level were inspired by the existence 
of interdependent changes in groups of variable amino 
acids, as formulated for the first time by the covarion 
model6, and they typically use the multiple sequence 
alignment (MSA) for a protein family of homologues  
to search for correlated mutations. Such correlated muta‑
tions are suggestive of compensatory changes that occur 
between entangled residues (for example, those in prox‑
imity, direct contact or acting together in catalytic or  
binding sites) to maintain protein stability, function 
or folding7–10. Furthermore, extending these methods  
to search for correlated mutations between pairs  
of interacting proteins can identify sites of inter‑protein 
interaction11–17. In parallel, related methods have been 
developed to search for larger groups of residues that 
are specifically co‑conserved within particular protein 
subfamilies. These methods can identify residues that 
define functional properties of that subfamily, such as 
substrate binding specificity of a given enzyme18,19.

Methods for detecting co‑evolution at the protein 
level often mine phylogenetic trees that have been built for 
many protein families using entire protein sequences20,21. 
The co‑evolution between interacting species, such as 
parasites–hosts, predators–prey and symbionts–hosts, 
is in many cases manifested as a similarity of the phy‑
logenetic trees of these co‑evolving species. Likewise, 
molecular co‑evolution caused by physical or functional 
protein interactions frequently results in similarities of 
the corresponding protein family trees. Consequently, 
approaches based on protein family tree similarity can 
successfully identify interaction partners for a given  
protein, such as ligand–receptor pairs21,22.
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Molecular phylogenetics
The study of evolutionary 
phenomena using biomolecular 
data, generally in the form of 
sequences of nucleic acids  
or proteins.

Covarion model
A phylogenetic model in  
which the evolutionary  
rate of different codons  
are interdependent.

Protein family
A set of homologous  
proteins defined according  
to a given threshold of 
sequence similarity.
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Abstract | Co‑evolution is a fundamental component of the theory of evolution and is 
essential for understanding the relationships between species in complex ecological 
networks. A wide range of co‑evolution‑inspired computational methods has been 
designed to predict molecular interactions, but it is only recently that important advances 
have been made. Breakthroughs in the handling of phylogenetic information and in 
disentangling indirect relationships have resulted in an improved capacity to predict 
interactions between proteins and contacts between different protein residues. Here, we 
review the main co‑evolution‑based computational approaches, their theoretical basis, 
potential applications and foreseeable developments.
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Homologues
Genes and proteins arisen  
from a common ancestor.  
In most cases, this common 
origin is traceable at the 
sequence level, albeit  
the sequence similarity  
can be very low and  
difficult to detect.

Correlated mutations
Relationship between two 
positions of a multiple 
sequence alignment in which 
the amino acid changes in one 
of the positions (mutational 
pattern) parallels that in the 
other.

The increasing availability of protein sequences and 
key new methodological advances aimed at disentan‑
gling direct and indirect co‑evolutionary signals have 
renewed the interest in co‑evolution‑based prediction 
strategies, leading to possible applications in a wider 
range of biological problems, such as the prediction of 
contacts in protein structures, sites of specific protein 
interactions and the predictions of protein interaction 
partners at the genomic scale.

In this Review, we present the most prominent com‑
putational methods based on co‑evolution (FIG. 1). We 
progress through methods analysing pairs, and then 
groups, of co‑evolving residues through to methods at 
the whole‑protein level, and we describe the biological 
problems to which they have been applied and briefly 
explain the concepts and algorithms behind them. 
Key technical details (including the underlying algo‑
rithms) that differentiate the methods are described in 

Supplementary information S1 (boxes), and examples 
of the connection between computational and experi‑
mental approaches are given in BOXES 1,2,3. For a sum‑
mary of practical information about these computational 
methods and tools, see TABLE 1. Finally, we discuss the 
problems relating to the interpretation of the results in 
evolutionary terms and present what, in our opinion, 
will be the most promising future developments.

Co‑evolution at the residue level
Substantial effort has been invested in studying the 
co‑evolution of pairs of positions in MSAs of protein 
families (that is, residue co‑evolution). These pairs of 
co‑evolving positions were often found to correspond to 
spatially proximal residues in the protein structure, and 
such putative inter‑residue contacts have aided protein  
structure prediction (BOX 1). Recent methodological 
developments have improved the accuracy of protein 
contact prediction by disentangling the direct pairwise 
couplings from the background network of coordinately 
mutating positions. Furthermore, co‑evolution between 
residues in different proteins has been used as predic‑
tors of the interacting surfaces (protein interfaces) in pro‑
tein complexes as well as in the search for interacting 
partners of a given protein, as discussed later in ‘Hybrid  
residue–protein methods’.

Detecting correlated amino acid changes in pairs of 
positions. Residue co‑evolution was originally assessed 
through detecting pairs of positions (two columns of the 
MSA) that have interdependent amino acid frequencies23 
or similar patterns of amino acid substitutions7,9,10. In par‑
ticular, these substitution patterns can be built accord‑
ing to a pre‑calculated amino acid substitution matrix, and 
their similarity can be assessed by a linear correlation. 
This approach is often called the McLachlan‑based sub‑
stitution correlation (McBASC). This method has been 
extensively tested and compared with newer methods 
and shows a small but significant capability to recover 
pairs of positions in physical contact24 and still serves as a 
baseline to benchmark the performance of new methods25.

Estimation of inter‑position co‑variation using sub‑
stitution matrices imposes a demanding scenario for 
highly variable positions to be assigned as co‑varying. 
Consequently, McBASC tends to detect co‑evolving 
positions preferentially that are fairly well‑conserved 
during evolution24. This approach provides a rough 
estimate of the magnitude of the correlation between 
positions without assuming a specific compensatory 
biochemical nature. The initial proposal lacked a 
defined confidence threshold to extrapolate between 
cases. In addition, it did not address problems associ‑
ated with the alignment quality, such as the inclusion 
of divergent or redundant sequences26. Inspired by this 
approach, co‑evolution analysis using protein sequences 
(CAPS)27 dampens the influence of background phylo‑
genetic divergence by requiring the detected correlations 
to still be detected after particular clades are removed 
from the MSA. It also corrects the amino acid substi‑
tution matrix so as to consider the actual divergence 
among the sequences. Owing to the high computational 

Figure 1 | Co‑evolutionary features extracted from protein multiple sequence 
alignments. The three‑dimensional structures of two interacting proteins (purple  
and yellow) are schematized as well as their multiple sequence alignments (MSAs) and 
phylogenetic trees based on orthologous sequences from a number of organisms. 
Circles of different colours represent different species from which the protein 
sequences are derived. The purple MSA includes a family of paralogues that are 
present in some of these organisms (sequences in dark purple). A number of 
evolutionary and co‑evolutionary features are schematized in the alignments and the 
corresponding three‑dimensional structures. Fully conserved positions (grey) tend to 
form a part of the protein core and are also in functional regions (such as protein 
interaction sites and catalytic sites). Specificity‑determining positions (SDPs; purple) 
tend to be in functional sites conferring specificity. Intra‑protein correlated mutations 
(light blue) are related to residue spatial proximity, whereas inter‑protein correlated 
mutations (dark blue) reflect in many cases proximity between residues in different 
protein chains. Additionally, the protein–protein co‑evolution can be evaluated: the 
phylogenetic trees of the two families can be compared in different ways, as shown 
below the MSAs. For example, the trees can be converted to distance matrices to 
quantify the tree similarity. Alternatively, the similarity of the patterns of presence or 
absence of the two proteins in a set of genomes of different species (phylogenetic 
profiles) is also an indication of co‑dependence.
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Phylogenetic trees
Representations of the 
evolutionary relationships 
between a set of biological 
entities (such as proteins, 
genes or organisms).

Protein interfaces
Regions of the surface of  
a protein involved in the 
interaction with others.

Amino acid substitution 
matrix
A matrix containing, for every 
possible pair between the  
20 canonical amino acids,  
a quantification of the 
‘interchangeability’ of one by 
the other in the same protein 
site, as a proxy of the 
evolutionary feasibility of  
the corresponding change 
(mutation). They are often 
derived from curated sets of 
MSAs assumed to contain real 
representations of the amino 
acids allowed at a given 
protein site.

Benchmark
In bioinformatics, this term 
describes the assessment of the 
performance of a method using 
a set of examples of known 
outcome (the ‘gold standard’), 
particularly by testing its 
predictive power relative to 
current best practice tools.

Clades
Groups of entities (such as 
genes or organisms) in a 
phylogenetic tree that have  
all arisen from a common 
ancestor.

Homology modelling
Protein structure prediction 
technique that, on the basis  
of the proven relationship 
between sequence similarity 
and structural similarity, 
models the three-dimensional 
structure of a protein based  
on the (experimentally 
determined) structure of  
a homologue (known as a 
‘template’ in this context).  
Also known as ‘comparative 
modelling’.

De novo protein modelling
Any approach for predicting 
protein structure that does  
not make use of information  
on other existing protein 
structures (such as those of 
homologues). Also known as 
‘ab initio modelling’.

demands of CAPS, this methodology has been tested in 
specific cases but not yet in a large‑scale data set.

Mutual information has been also used to detect 
co‑varying positions. Whereas correlation‑based meth‑
ods explore inter‑sequence amino acid substitutions, 
mutual information considers the distribution of each 
amino acid in the different sequences for a position. In 
fact, mutual information quantifies whether the pres‑
ence of an amino acid in a given sequence for a posi‑
tion is a ‘good prediction’ of the presence of any given 
amino acid in the same sequence for a second position23. 

In this sense, mutual information does not account for 
which particular amino acids are present in the same 
sequences in both positions but relies on the statistical 
significance of the observed co‑variations. Therefore, 
the different amino acids are treated as different sym‑
bols that are not related by similarity relationships, and 
the magnitude of the biochemical changes is not taken 
into account when assessing the similarity of mutational 
patterns. The initial formulations of this approach were 
vulnerable to large variations in sequence conservations 
in the MSAs24 as well as to the effect of the phylogenetic 

Box 1 | From pairwise residue co‑evolution to protein structure prediction

Different co‑evolution‑based methodologies are used for predicting residue contacts on the basis of information extracted 
from an input multiple sequence alignment (MSA). The three main approaches for evaluating the co‑evolution between 
two residues involve substitution correlations, mutual information of amino acid frequencies or — as in direct coupling 
analysis (DCA) or protein sparse inverse covariance (PSICOV) — a global statistical model of the MSA. Actual or inferred 
protein contacts are traditionally represented as contact maps, where every point represents a contact between two 
residues (for example, A and B in the figure)91.

Predicted contact maps have been used to help the prediction of three‑dimensional protein structures in different 
methodological contexts. For example, homology modelling or fold recognition methods can suggest various structural 
models based on known structures of related proteins. These can then be filtered into the most likely models that contain 
the residue contacts predicted by correlated mutations, mutual‑information‑based7–10,92 or DCA‑like approaches93. By 
contrast, de novo protein modelling attempts to predict protein structures without prior structural information from related 
proteins. This often involves computationally intense protein‑folding simulations. Pairwise constraints can be an effective 
way of reducing the vast space that has to be explored by the de novo protein‑folding simulations. Although the accuracy 
of substitution correlation and mutual information approaches for predicting residue contacts is not enough to produce 
systematically reliable de novo protein models, new prediction methods (such as PSICOV and DCA)38,39 that disentangle 
directly from indirectly coupled positions have improved the prediction of protein structures by de novo protein‑folding 
simulations94–97. The application of these approaches produced accurate protein contact predictions for two sets of ~150 
large protein families (both with more than 1,000 members)38,39. In fact, in one of these analyses DCA showed an average 
true‑positive rate of up to 0.8 for the first 20 predictions38. Further use of these constraints in de novo structure prediction, 
with the help of predicted secondary structure, resulted in high‑quality protein models for short protein sequences94,97,  
and their combination with other topological features retrieved equally good results for two sets of transmembrane 
proteins95,96. Although these methods have been used on proteins belonging to large families, a recent evaluation of the 
performance of one of them (PSICOV)43 in a more general predictive scenario shows that its accuracy can drop to 20% of 
correct predictions in typical protein families that have a fairly small number of members (that is, proteins of unknown 
structure submitted to the Critical Assessment of Techniques for Protein Structure Prediction (CASP) evaluation of  
protein structure prediction methods).
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Mutual information
In information theory, this is 
entropy-based formulation  
for quantifying the 
interdependence between  
the values of two random 
categorical variables.

background. These problems have been addressed in 
subsequent versions25,28,29 that improved contact predic‑
tion performance25 (represented as ‘Mutual information 
corrected’ in FIG. 2), providing important information for 
understanding protein structures30.

McBASC and mutual information approaches are 
probably the most commonly used approaches to study 
residue co‑evolution, although many others have been 
developed over recent years, such as methods addressing 
the similarities of vectors that represent the presence or 
absence of the 20 different amino acids in each posi‑
tion of the MSAs31,32. Other methods use phylogenetic 
approaches to start from a reconstructed ancestral state 
and then to characterize the sequence of evolutionary 
changes that have occurred over time to detect patterns 
of simultaneous substitution13,33,34 or explicitly to contrast 

independent evolution and co‑evolution models35,36. In 
this case, the use of an enhanced continuous-time Markov 
process model for sequence co‑evolution represented an 
important step forwards13. These approaches are suit‑
able for small‑scale studies of co‑evolution in small pro‑
tein families, but the evaluation of their performance  
in large‑scale studies remains excessively demanding in 
computational terms.

Disentangling directly coupled residues from the net‑
work of indirectly correlated positions. An important 
obstacle in the detection of co‑evolving positions is 
the apparent co‑variation or indirect coupling that can 
occur when more than two positions show coordinated  
substitution patterns. In these cases, the apparent co‑ 
variation between two positions is the consequence of 

Box 2 | Groups of co‑evolving residues are implicated in functional specificity and structure–function coordination

Groups of co‑evolving residues are expected to reflect the 
coordinated action of these residues in a functional or structural 
context. Specificity‑determining positions (SDPs) are groups of 
positions that coordinately mutate in the context of subfamily 
divergence. They can be detected by various methods, including those 
that partition the evolutionary tree into subfamilies, mutational 
behaviour and multivariate analyses (in the dashed box in the figure). 
SDPs tend to form three‑dimensional clusters46,47 at ligand‑ and/or 
protein‑binding sites18,19,47,48 to determine the functional specificity of 
the protein. Therefore, SDPs are often used to predict ligand‑ and 
protein‑binding sites, which can help to interpret disease‑associated 
mutations98,99 or to design direct mutagenesis experiments to 
alter protein function100–104. The most common experimental 
approaches have been to mutate SDP positions to impede 
partner binding102,104 or to exchange the residues (or regions) 
between members of different subfamilies to switch  
the corresponding binding partners100,101,103.

Other examples include the study of co‑evolution between 
proliferating cell nuclear antigen (PCNA) and its interaction 
partners across species of fungi105. PCNA orthologues clearly 
segregate into two subfamilies, from which a SequenceSpace‑like 
analysis identified SDPs in PCNA that distinguish these two subfamilies 
and that represent partner‑binding sites. Experimentally switching 
these sites with those from the other subfamily disrupted PCNA–
partner interactions and caused cell death. This suggests that 
co‑evolution of protein interaction networks (in this case, PCNA and  
its interaction partners) could contribute to hybrid incompatibility to 
promote and to stabilize speciation. Similarly, co‑evolution between 
components of signalling cascades can retain evolutionarily 
constrained interactions while reducing pathway crosstalk106.  
In this case, an evolutionary‑trace‑like analysis of the bacterial PhoR 
kinases and their PhoB substrates detected SDPs that were 
specific to the α‑proteobacterial clade. Inter‑clade amino acid 
exchange showed that these residues have a role in avoiding 
crosstalk to another signalling cascade that arose specifically  
in α‑proteobacteria.

Statistical coupling analysis (SCA)‑like approaches have 
successfully been used to explore the implication of networks  
of co‑evolving residues in protein folding50 and allosteric 
communication51,53 (see the lower panel of the figure), and the 
functional importance of these sites has been experimentally confirmed by mutagenesis 
or chimaera generation in several cases54. Interestingly, networks of correlated mutations52 
and SDPs49 have been also anecdotally related with allosteric networks, supporting the 
recruitment of networks of co‑evolving residues as a mechanism for generating chains of 
allosteric transmission. MSA, multiple sequence alignment; r

TA
, tree–position correlation.
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Continuous‑time Markov 
process
Process in which a system 
explores along time different 
states of a finite ‘state space’  
in such a way that the  
Markov property is satisfied. 
This property means that the 
probability distribution of  
the system at a time point 
given the whole history of  
the process up to a previous 
time depends only on the  
state of the system at that 
previous time.

Box 3 | Protein–protein co‑evolution has an important role in many biological systems

Many methodologies for quantifying the co‑evolution between two proteins use multiple sequence alignments 
(MSAs) as their input. These can be used to generate phylogenetic trees to infer co‑evolution on the basis of tree 
similarity (in the dashed box of the figure). Some methods, such as Tol‑MirrorTree, use the global evolutionary 
relationships between species (the ‘tree of life’) to correct the background tree similarity due to speciation.  
Another group of approaches, such as ContextMirror, corrects this and other factors affecting observed protein tree 
similarities using information from large collections of trees (for example, those derived from the whole proteome of 
interest; lower panel of the figure).

To maintain interactions during evolution, binding partners could remain conserved, or they could co‑evolve. 
Co‑evolution has been found in systems that must evolve quickly or when proteins acquire new functions while 
keeping the interactions between the involved partners. For example, some nuclear‑encoded members of the 
mitochondrial NADH–ubiquinone reductase complex have accelerated evolutionary rates, possibly to accommodate 
the intrinsic accelerated evolution of their mitochondrial counterparts. In one study, a method based on the 
accumulation of inter‑protein correlated mutations (see ‘Hybrid residue–protein methods’ in the main text) was used 
to uncover the direct physical interactions within this large complex of 45 subunits107; interactions were then 
experimentally confirmed using a yeast two‑hybrid approach.

In another application, the MirrorTree approach21,108 was used to demonstrate co‑evolution between some pairs of 
proteins involved in redox homeostasis and cellular timekeeping109. The functional interconnectivity of these 
seemingly disparate processes was shown by the oxidation–reduction cycles of peroxiredoxin proteins being universal 
markers for circadian rhythms across bacteria, archaea and eukaryotes, despite the large mechanistic differences109.

Finally, sex‑related molecular systems are another prototypic case of rapidly evolving systems in which co‑evolution 
has an important role, because they have to differentiate and to acquire specificity quickly so as to avoid cross‑ 
fertilization while maintaining the specific interactions. Studies of co‑evolution in these systems include the sequencing 
of 14 alleles of Brassica campestris genes, which found co‑evolution between the (male) SCR and the (female) S receptor 
kinase110. This system forms the basis of the pollen discrimination mechanism. More recently, deep sequencing was 
used to study the co‑evolution between male and female fertilization proteins in abalone snails111. ρ

AB|X
, partial 

correlation between proteins A and B given any X protein; C
AB

, interaction index; r
AB

, tree–tree correlation;  
r

A*B*
, corrected tree–tree correlation.
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Monte Carlo algorithm
An algorithm based on 
simulated repeated random 
sampling to obtain 
approximate solutions to 
complex mathematical  
and statistical problems.

Heuristic approaches
Methods that makes use  
of approximations or 
assumptions so as to reduce 
the search space but that 
consequently do not ensure 
the exact solution to be found.

Bayesian network
Probabilistic model in which  
a set of random variables 
(nodes) and their conditional 
dependencies (directed edges) 
are arranged in a network 
representation.

Residue entropy
Quantification of the 
evolutionary variability of the 
position of a multiple sequence 
alignment corresponding to a 
given protein residue based  
on the ‘entropy’ parameter of 
information theory.

Orthologues
Homologous genes or  
proteins split in a speciation 
event, ending up in  
different organisms.

the evolutionary interdependence of both positions 
with one or more additional positions. The aggrega‑
tion of these indirect couplings can make it difficult to  
recognize the directly interdependent positions.

As the direct couplings are more reliable for predict‑
ing physically proximal residues in protein structures, 
approaches are needed to distinguish direct from indi‑
rect couplings. Such methods are varied, but all consider 
that a set of direct pairwise couplings between positions 
seeds a larger set of indirectly coupled positions to form 
the whole network of coordinately mutating positions. 
A first basic model was proposed by Lapedes et al.37, 
who assumed that indirect couplings do not represent 
evolutionary interdependence and can be considered 
to be uninformative pairwise co‑variations. This first 
approach used a Monte Carlo algorithm to infer the sim‑
plest probabilistic model that was able to account for 
the whole network of co‑variations in a simulated sce‑
nario. The importance of this first approach remained 
unacknowledged until a number of recent publications 
revisited the problem with different strategies15,38,39. Direct 
coupling analysis (DCA)15–17,38 and protein sparse inverse 
covariance (PSICOV)39 establish a global statistical model 
of the MSA in terms of position‑specific variability and 
inter‑position coupling38,39. Heuristic approaches are used to 
resolve the model, obtaining the estimated values of direct 
interposition couplings that, in the case of DCA, can 
finally be transformed into a mutual‑information‑based 
formulation. It is interesting that a related approach was 
also useful to carry out sequence homology searches40.

Alternatively, Burger and van Nimwegen’s41 method 
uses a Bayesian network model that includes pair‑
wise conditional dependencies, and the regularized 
multinomial regression‑based correlated mutations 
(RMRCM) approach42 takes into account the whole 
network of dependencies and not only the individual  
pairwise dependencies.

It is still too early to compare these methodologies 
fully, but they represent an important advance in the 
field. For MSAs with more than 1,000 sequences, DCA 
and PSICOV seem to be superior to Burger and van 
Nimwegen’s method38,39. In fact, some of these methods 
are able to predict contacts between residues far apart 
in the linear sequence with sufficient accuracy as to be 
useful for guiding in silico folding experiments (BOX 1). 
Nevertheless, such clear improvements are obtained only 
for protein families with thousands of members43. Direct 
coupling approaches are expected to remove unspecific 
influences, such as the previously discussed phylogenetic  
background44,45, although this attractive possibility 
needs further investigation. It will be interesting to see 
how the application of these new methods progresses  
in the hands of the scientific community, as the results in  
the recent Critical Assessment of Techniques for Protein 
Structure Prediction (CASP) competition remain largely 
inconclusive.

Groups of co‑evolving residues
Although various methods that are focused on pairwise 
interactions actively exclude larger groups of co‑varying  
residues, such groups of residues can provide useful 

information albeit that is not always related to direct 
contacts. In many protein families, such as kinases, 
their phylogenetic trees reveal various subfamilies, 
which often represent proteins that, in the framework 
of the common function of the whole family, have dif‑
ferent functional specificities, such as binding of differ‑
ent substrates or effectors. Whereas some positions are 
conserved in all sequences — and thus might represent 
residues with important structural or catalytic roles 
across the whole protein family — other positions may 
be conserved only within particular subfamilies (FIG. 1). 
These subfamily‑specific residues are likely to define the 
specific functionality of that subfamily, such as form‑
ing three‑dimensional clusters46,47 that make‑up ligand‑ 
and/or protein‑binding sites18,19,47,48 or allosteric chains of 
residues49. This family‑dependent conservation pattern 
results in these positions showing correlated mutational 
patterns, making this phenomenon an essential part of 
the study of molecular co‑evolution (BOX 2).

These positions were originally termed ‘tree‑ 
determinant’ positions to reflect their relation with the 
structure of the phylogenetic trees and were more recently 
renamed as specificity‑determining positions (SDPs) to 
highlight their potential functional role. As discussed 
below, various tools are being developed to detect SDPs. 
Additionally, related methods based on statistical coupling 
analysis (SCA) explicitly search for groups of co‑evolving 
residues that can contribute to processes such as pro‑
tein folding50 or allosteric interactions51–54 (BOX 2); these 
methods are distinguished from SDP‑detecting meth‑
ods by their less stringent requirement for identified  
residues to be specific to particular protein subfamilies.

Methods using phylogenetic trees. Analysing the con‑
servation in different branches of phylogenetic trees is 
perhaps the most obvious approach for detecting SDPs. 
The methods that implement this idea start by building a 
tree from the MSA before establishing branching points 
that partition the tree into subfamilies in which there 
is a significant concentration of specifically conserved 
positions (that is, SDPs for that subfamily). This idea was 
first implemented in the evolutionary trace method19, 
which explores the hierarchical organization of a protein 
family by following the similarity of the sequences that 
split in each tree branch and then scores these positions 
as a function of when they became conserved (how close 
they are to the origin of the tree). Evolutionary trace 
avoids the need to determine an optimal partition of the 
MSA into subfamilies. However, other approaches, such 
as the approach proposed by Hannenhalli and Russell55 
and the S method47, explicitly look for the optimal par‑
tition of subfamilies by comparing the distributions of 
intra‑ and inter‑group residue entropy for every possible 
split in the tree.

Evolutionary trace has been improved by calculating 
a score on the basis of the weighted entropy of a position 
in all the possible subfamilies defined by the nodes of the 
corresponding phylogenetic tree56 (a method called rvET, 
for ‘real value evolutionary trace’). The evolutionary 
trace approach has also been independently improved 
by detecting SDPs using the mutual information of 
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Table 1 | Representative protein co‑evolution methods

Method Analysis Main application Servers and databases Refs

Inter-residue co-evolution

Mutual 
information

Simple inter‑position 
co‑evolution

Protein contacts (model 
selection for homology 
modelling)

Co‑evolution analysis server 
(http://coevolution.gersteinlab.
org/coevolution)

23

Mutual 
information 
corrected (MIp) 

Inter‑position co‑evolution 
without phylogenetic 
contribution

Protein contacts (model 
selection for homology 
modelling)

25

McBASC Simple inter‑position 
co‑evolution

Protein contacts (model 
selection for homology 
modelling)

Co‑evolution analysis server 
(http://coevolution.gersteinlab.
org/coevolution)

7

CAPS Inter‑position co‑evolution 
without phylogenetic 
contribution

Protein contacts (model 
selection for homology 
modelling)

CAPS server (http://bioinf.gen.tcd.
ie/caps/home.html)

27

DCA or DCA 
optimized

Pair‑specific inter‑position 
co‑evolution

Protein contacts (ab 
initio protein structure 
prediction)

15, 
38

PSICOV Pair‑specific inter‑position 
co‑evolution

Protein contacts (ab 
initio protein structure 
prediction)

39

SDPs

Evolutionary 
trace

SDPs Ligand and protein 
interaction specificity

Evolutionary Trace Server (http://
mammoth.bcm.tmc.edu/ETserver.
html)

56

SDPsite SDPs and subfamilies Ligand and protein 
interaction specificity

SDPsite (http://bioinf.fbb.msu.ru/
SDPsite/index.jsp)

58

Mutational 
behaviour

SDPs Ligand and protein 
interaction specificity

TreeDet (http://treedetv2.bioinfo.
cnio.es/treedet/index.html)

47

SequenceSpace SDPs and subfamilies by 
visual inspection

Ligand and protein 
interaction specificity

18

S3det SDPs and subfamilies Ligand and protein 
interaction specificity

TreeDet (http://treedetv2.bioinfo.
cnio.es/treedet/index.html)

48

SCA-like

SCAold Conditioned conservation Intra‑protein pathways 
(allostery)

51

SCAnew Subfamily‑specific 
conservation

Intra‑protein pathways 
(allostery)

54

Inter-protein co-evolution

MirrorTree Simple inter‑protein 
co‑evolution

Physical and functional 
interactions

MirrorTree Server (http://csbg.
cnb.csic.es/mtserver)

21

i2h Simple inter‑protein 
co‑evolution

Physical and functional 
interactions

88

Tol‑MirrorTree Inter‑protein co‑evolution 
without phylogenetic 
contribution

Physical and functional 
interactions

67

ContextMirror Pair‑specific inter‑protein 
co‑evolution

Physical and functional 
interactions

EcID database (http://ecid.bioinfo.
cnio.es)

71

MMM Inter‑protein co‑evolution 
of the strongest 
co‑evolving sequence in 
the alignments

Physical and functional 
interactions

MatrixMatchMaker Web interface 
(http://www.uhnresearch.ca/labs/
tillier/MMMWEBvII/MMMWEBvII.
php); MMM‑D database of 
co‑evolving proteins (http://tillier.
uhnres.utoronto.ca/MMMD.php)

74

Phylogenetic 
profiles

Sequence presence‑ or 
absence‑associated 
inter‑protein co‑evolution

Physical and functional 
interactions

STRING database (http://www.
string‑db.org)

80

A more comprehensive version of this table is available in Supplementary information S2 (table). CAPS, co‑evolution analysis using 
protein sequences; DCA, direct coupling analysis; i2h, in silico two‑hybrid; McBASC, McLachlan‑based substitution correlation;  
MMM, MatrixMatchMaker; PSICOV, protein sparse inverse covariance; SCA, statistical coupling analysis; SDP, specificity‑determining 
positions; STRING, search tool for the retrieval of interacting genes/proteins.

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 14 | APRIL 2013 | 255

© 2013 Macmillan Publishers Limited. All rights reserved

http://coevolution.gersteinlab.org/coevolution
http://coevolution.gersteinlab.org/coevolution
http://coevolution.gersteinlab.org/coevolution
http://coevolution.gersteinlab.org/coevolution
http://bioinf.gen.tcd.ie/caps/home.html
http://bioinf.gen.tcd.ie/caps/home.html
http://mammoth.bcm.tmc.edu/ETserver.html
http://mammoth.bcm.tmc.edu/ETserver.html
http://mammoth.bcm.tmc.edu/ETserver.html
http://bioinf.fbb.msu.ru/SDPsite/index.jsp
http://bioinf.fbb.msu.ru/SDPsite/index.jsp
http://treedetv2.bioinfo.cnio.es/treedet/index.html
http://treedetv2.bioinfo.cnio.es/treedet/index.html
http://treedetv2.bioinfo.cnio.es/treedet/index.html
http://treedetv2.bioinfo.cnio.es/treedet/index.html
http://csbg.cnb.csic.es/mtserver/
http://csbg.cnb.csic.es/mtserver/
http://ecid.bioinfo.cnio.es
http://ecid.bioinfo.cnio.es
http://www.uhnresearch.ca/labs/tillier/MMMWEBvII/MMMWEBvII.php
http://www.uhnresearch.ca/labs/tillier/MMMWEBvII/MMMWEBvII.php
http://www.uhnresearch.ca/labs/tillier/MMMWEBvII/MMMWEBvII.php
http://tillier.uhnres.utoronto.ca/MMMD.php
http://tillier.uhnres.utoronto.ca/MMMD.php
http://www.string-db.org
http://www.string-db.org


Horizontal gene transfer
(HGT). Transmission of genetic 
material between organisms 
different from that which 
occurs between the parents 
and the offspring (‘vertical 
transfer’). Also known as 
‘lateral gene transfer’.

every position and different groups of orthologues57 or 
tree‑based partitions58 (for SDPsite). In the case of rvET, 
it provides a score that reflects both the global level of 
conservation and the coherence of this conservation (or 
variation) with the phylogenetic tree. In this way, it pro‑
vides a gradual transition from complete conservation to 
specific SDPs. These methods detect clusters of residues 
that are structural or functionally important56, and they 
have been used in combination with structural informa‑
tion, such as solvent accessibility and spatial proximity  
of the inferred SDPs (for example, see REF. 58), to 
improve the detection of functional sites.

Evolutionary‑trace‑related methods consider only 
identical amino acids as being conserved and do not 
take into account amino acid similarities. This cat‑
egorical approach might miss more subtle conserva‑
tion patterns that involve similar amino acids. However, 
the evolutionary trace strategy avoids being restricted 
to a single subfamily partition, and it provides a good 
estimate of the evolutionary relevance of positions. A 

potential difficulty is that it requires manual analysis  
of the positions detected, which may be associated 
with very different activities, such as ligand binding19,  
allosteric regulation49 or structural roles56.

Methods based on the detection of positions that are rep‑
resentative of the global variability. The premise of these 
methods is that groups of positions that better reflect the 
evolution of the family are more likely to be responsible 
for the functional specificity of the protein. The varia‑
tion among these positions would simultaneously tend 
to be correlated. The mutational behaviour method47 
compares the pattern of mutations of every position in 
the MSA with the variation of the complete sequences. 
Importantly, both position and sequence divergences are 
calculated on the basis of amino acid substitution matri‑
ces, and thus this method accounts for the biochemical 
relevance of the amino acid change. Accordingly, muta‑
tional behaviour tends to detect clear shifts in amino acid 
properties and their influence on sequence divergences. 
This methodology is particularly useful to detect SDPs 
that are correlated with the divergence of the protein 
families, and these tend to correspond to ligand‑ or  
protein‑binding interfaces47. This type of approach has 
also been used in combination with structural informa‑
tion to improve the detection of functional sites in known 
protein structures59 as well as to improve the selection of 
docking models12. Like evolutionary trace, this method‑
ology does not require protein subfamilies to have been 
detected previously, thus facilitating the implementation 
but complicating the interpretation of the subfamily–SDP 
relationship. An additional drawback of the method is 
that it does not explicitly remove uninformative sig‑
nals (such as redundant sequences) or outliers (such as 
sequences introduced by horizontal gene transfer).

Methods based on multivariate analyses. One of the first 
methods that aimed to detect SDPs was SequenceSpace18. 
This method was based on the idea of detecting the 
main sources of variability in an MSA and the positions 
responsible for this, as achieved by carrying out a principal  
component analysis (PCA) of the MSA. This analysis pro‑
jects the sequences onto simplified multidimensional 
spaces in which the subfamilies that are equivalent to 
main branches in the tree are represented as clusters of 
proteins. The key issue is that this approach makes it 
possible to represent the residue–position associations 
that are characteristic of each subfamily in an equivalent 
multidimensional space, making the detection of SDPs 
straightforward. The elegant approach implemented in 
SequenceSpace has been useful to guide experimental 
studies (BOX 2). However, it requires interactive manual 
inspection of the PCA spaces by experts to identify the 
protein subfamilies and their corresponding SDPs.

More recently, a fully automated method has been 
developed, called S3det, that is based on a related mathe‑
matical approach called multiple correspondence analysis48  
(MCA), which is conceptually equivalent to PCA but 
is better suited to dealing with categorical data, such as 
amino acid identities. S3det automatically selects the 
most informative dimensions, carrying out a robust 

Figure 2 | Influence of phylogenetic history in the association of co‑evolution and 
different types of molecular interactions. This schema shows the most representative 
methods according to the molecular interactions with which they are associated and the 
coherence of their results to the phylogenetic history of the family. Methods focused  
on detecting pair‑specific co‑evolution are also independent of the phylogenetic  
history. Methods are coloured according to the categories discussed in the main text. 
Methodologies presenting a higher predictive power are represented with more intense 
colour gradients. In this figure, it is evident that methods based on inter‑residue and 
inter‑protein co‑evolution tend to present higher predictive powers when they become 
less dependent on the phylogenetic history and become more pair‑specific, whereas 
statistical coupling analysis (SCA)‑like and specificity‑determining positions (SDPs) that 
are strongly associated to the phylogenetic history are more informative for functional 
sites and networks of residues. CAPS, co‑evolution analysis using protein sequences; 
CEO, combinatorial entropy optimization; DCA, direct coupling analysis; ET, evolutionary 
trace; i2h, in silico two‑hybrid; McBASC, McLachlan‑based substitution correlation;  
MB, mutational behaviour; MMM, MatrixMatchMaker.
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Principal component 
analysis
(PCA). Multivariate data 
analysis technique that 
consists of calculating a lower 
dimensionality space in which 
the axes explain most of the 
variability of the original data. 
The rationale is that such lower 
dimensionality space is easy  
to handle and to visualize, 
whereas most of the 
information of the original  
data (for example, in terms of 
relative distances) is retained 
and some contributions of 
noise are removed.

Multiple correspondence 
analysis
(MCA). Multivariate data 
analysis technique similar  
to principal component 
analysis but more suitable  
for categorical data.

Spectral decomposition
Decomposition of a squared 
matrix (A) as the product of  
its eigenvectors (V) times  
the diagonal matrix of its 
eigenvalues (D) times the 
inverse of its eigenvectors: 
A=V·D·V−1. Also known  
as ‘eigendecomposition’.

clustering analysis of the sequence space and detecting 
those residues associated with the subfamilies obtained 
in the equivalent position space. SDPs are detected as 
those that are differentially conserved among any possi‑
ble combination of subfamilies. S3det has been tested on 
a large set of protein families and is robust in detecting 
protein subfamilies associated with distinct enzymatic 
or protein binding specificities. Moreover, SDPs identi‑
fied by S3det can represent ligand‑ and protein‑binding 
sites48. However, as is the case for the evolutionary trace, 
the main limitation of S3det is that it does not consider 
similarities between amino acids, such that it might miss 
SDPs with subtle conservation patterns. When compared 
with other methods48, such as rvET56, mutational behav‑
iour47, combinatorial entropy optimization (CEO; see 
below)60 and an automated version of SequenceSpace48, 
S3det provides better information about subfamily clas‑
sification, whereas rvET and S3det are the most effec‑
tive tools for detecting binding sites that functionally  
distinguish the protein subfamilies.

Other approaches to detect SDPs. Other methods to 
detect SDPs do not use phylogenetic trees for detecting 
subfamilies. For example, kPax is based on a Bayesian 
model that allows the simultaneous detection of sub‑
families and SDPs through the optimization of the  
subset of residues that are considered informative for such 
purpose61. In this approach, only this subset of residues 
is used to calculate sequence clusters. In an alternative 
approach, CEO carries out a combinatorial exploration 
of the possible subfamily partitions from which an opti‑
mal split is selected, and SDPs are assigned on the basis of 
residue entropies60. These conceptually interesting meth‑
ods have not been sufficiently evaluated in large‑scale 
comparisons, although a recent comparison that included 
CEO suggests that both rvET and S3det more reliably 
identify ligand‑ and protein‑binding specificities48.

Detection of residue co‑evolution through statistical 
coupling analysis strategies. Statistical coupling analy‑
sis (SCA) methods are challenging to classify and can 
be considered as a combination of approaches based 
on residue co‑variation and SDPs. SCA is intended to 
detect positions with similar patterns of amino acids, but 
it usually focuses on functionally associated patterns that 
actually define groups of co‑evolving residues. The first 
implementation of SCA51 (here called SCAold) proposed 
that a change in the amino acid frequency of one posi‑
tion produces a statistical perturbation in the amino 
acid frequency of evolutionarily coupled positions. In 
practice, this method detects, for a given amino acid  
in a site of reference, other positions that are conserved in  
the sequences containing that particular amino acid in the  
reference site. This reference site was defined manually 
to focus on functionally relevant amino acids.

SCAold has been widely reworked to the point that 
it is no longer appropriate to consider its latest versions 
as mere follow‑ups of the original approach; rather, they 
represent a very different method based on a similar 
rationale. The most recent version of SCA (here called 
SCAnew)54 is, like S3det48, based on a multivariate 

analysis. In this case, between‑position correlations 
are weighted according to their conservation, and 
the weighted correlation matrix is reduced by spectral 
decomposition. The ‘principal components’ obtained are 
expected to indicate subfamily‑associated conserva‑
tions. Thus, groups of co‑varying positions are detected 
as those that significantly contribute to these compo‑
nents. The groups of positions identified by SCAnew 
were called ‘protein sectors’62, and in several cases they 
have been shown to form structurally independent 
clusters of amino acids with distinct roles. In practice, 
these positions tend to be specifically conserved within 
protein subfamilies but are not necessarily differentially 
conserved in the different subfamilies (unlike the SDPs).

SCA‑like approaches have been used in interesting 
small‑scale studies to identify networks of co‑evolving 
residues implicated in protein folding50 and allosteric 
communication53 (BOX 2). However, SCAnew has not 
been evaluated on a large scale, and comparisons based 
on SCAold and some of its subsequent developments 
have shown that this approach is not particularly com‑
petitive for predicting protein contacts24,63. A lack of 
benchmarking standards is a major limitation for the 
general application of SCA‑based approaches.

Co‑evolution at the protein level
Potential co‑evolution between functionally related pro‑
tein families was initially observed in sporadic cases. For 
example, remarkable similarity was detected between 
the phylogenetic trees of ligands (such as insulins and 
interleukins) and their receptors; this co‑evolution was 
proposed to be required for the maintenance of their 
specific interactions22. These initial observations of pro‑
tein co‑evolution remained anecdotal until the genom‑
ics revolution prompted the development of methods to 
infer co‑evolution automatically between proteins using 
MSAs. Indeed, co‑evolution‑based approaches can be 
regarded as part of the methods to detect interactions 
and functional relationships between proteins using 
genomic information, jointly known as ‘context‑based’ 
methods64,65. These methods provide an orthogonal 
alternative to the more traditional prediction of function  
based on homology66 (BOX 3).

Family tree similarities. The first methods to quantify 
tree similarities implemented a simple linear correla‑
tion between the distance matrices of the two protein 
families, as a proxy of their phylogenetic trees20,21. This 
approach, which is called MirrorTree, made it possible 
to evaluate the relationship between tree similarities and 
physical or functional interaction and to predict poten‑
tial protein–protein interactions on a genomic scale21. 
For the two protein families for which co‑evolution is 
to be evaluated, MSAs are generated using orthologues 
from a set of reference genomes. MirrorTree then 
extracts inter‑orthologue distance matrices from the 
MSA‑derived trees or from the MSAs themselves (for 
example, as percentages of identities). Finally, the simi‑
larity between these distance matrices, as a proxy of the 
similarity of the corresponding trees, is evaluated with a 
linear correlation criterion.
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Paralogues
Homologous genes or proteins 
split in a gene duplication 
event, resulting in two copies of 
the parental gene in the same 
organism that latter diverge  
in sequence and function.

Protein domains
Pieces of a protein defined 
according to given criteria: for 
example, structural domains  
or functional domains.

One difficulty of approaches based on family tree 
similarities is that the phylogenetic trees of all protein 
families retain a degree of similarity to the archetypal 
‘tree of life’, which represents the global evolutionary 
relationships between organisms. Owing to this shared 
phylogenetic background, any pair of family trees has a 
‘basal’ level of similarity, regardless of whether the cor‑
responding proteins are functionally interacting. Some 
approaches to correct for this organismal speciation use 
the evolutionary distances between the corresponding 
species to normalize each protein–protein distance67–69. 
Another alternative is to infer the background similar‑
ity not from the general species tree but from the main 
tendencies of actual data from many protein families70,71. 
Similar challenges are faced by residue‑level tools that 
analyse MSAs, and methods such as CAPS and mutual 
information corrected (see above) also apply corrections  
for the phylogenetic background.

An important improvement in the co‑evolution‑based  
detection of protein–protein interactions came from 
the assembly of genome‑wide co‑evolutionary networks 
from the pairwise co‑evolution of individual protein 
pairs71. This approach, which is called ContextMirror, 
increases the accuracy of interaction predictions by cor‑
recting numerous problems related to the global tenden‑
cies of the data, including the background tree similarity 
due to speciation. Additionally, it is able to separate 
co‑evolution that is specific to a given pair of proteins 
from general co‑evolutionary trends that involve many 
families concomitantly, as it evaluates pair‑specific pro‑
tein co‑evolution by considering the contribution of 
every other protein tree. This disentanglement of direct 
and indirect correlations is closely related to the DCA‑
like methodologies of residue co‑evolution, which were 
independently developed (see above).

The application of MirrorTree‑related methods 
benefits from a careful selection of the species used to 
construct the trees. Different criteria for the selection of 
species have been shown to influence the results, prob‑
ably because of both taxonomy‑specific biases and dif‑
ferences in the age of the co‑evolutionary relationship 
are associated with different types of interactions72. To 
circumvent these problems, some methods automati‑
cally look for subsets of species in which co‑evolution 
is particularly strong73,74.

Other MirrorTree‑derived approaches predict spe‑
cific pairs of interacting proteins within two large pro‑
tein families that include paralogues. These methods 
are distinct from the previously described applications 
of family‑tree similarity that predict a general interac‑
tion between protein families; instead, the inter‑family 
interaction is already known, and these methods ana‑
lyse the correspondence between different members 
of the two families to predict which paralogues within 
one family interact with those in the other. The basic 
assumption is that the right ‘mapping’ (set of links) 
between the two families will render the strongest  
correlation of the corresponding trees75–77.

In addition to the use of whole‑protein sequences, 
phylogenetic trees derived from particular protein 
domains can be used to identify the interacting domains 

of two interacting proteins on the basis that these 
domains exhibit stronger co‑evolution signals than other 
non‑interacting domains within the same proteins78. 
Similarly, trees restricted to the interfaces showed that 
these more intensely co‑evolve than the rest of the pro‑
tein79. Both of these observations indicate that in many 
cases the co‑evolution between interacting proteins is a 
local phenomenon that can be circumscribed to certain 
regions or even particular residues. This would be in line 
with the use of co‑evolution signatures to identify inter‑
acting residues within proteins, as discussed earlier, and 
points to the possibility of using those co‑evolutionary 
signatures at the residue level to look for protein–protein  
co‑evolution (see ‘Hybrid residue–protein methods’ 
below).

Similarity of phylogenetic profiles. The tendency of pro‑
teins that carry out common functions to be present or 
absent from the same organisms can be considered to be 
an extreme case of co‑evolution, and this phenomenon 
is exploited by some methods to predict interacting or 
functionally related families of proteins80. The pattern 
of presence or absence of the orthologues of a protein 
across a set of genomes is known as a ‘phylogenetic pro‑
file’81, which is most simply represented as a binary vec‑
tor denoting the presence or absence of an orthologue in 
each genome80. However, more recent versions replaced 
this binary representation by quantifying the sequence 
similarity of the orthologues82 or by assessing the num‑
ber of copies (paralogues) of the gene in each genome83.

As for the MirrorTree methods, the underlying spe‑
ciation process introduces an important bias, in this case 
imposing strong constraints on the set of genes that are 
present in the genomes. For example, many proteins 
will simultaneously be present in bacterial and archaeal 
sequences but absent in eukaryotic sequences without 
implying that all of them develop a common function. 
To tackle this problem, some variants of this approach 
incorporate more sophisticated evolutionary models to 
weight the presence or absence of genes, depending on 
the species involved84,85. Moreover, the selection of the 
organisms for the construction of the profiles again has a 
drastic effect on the performance of these methods86 and 
on the type of function that can be predicted87. As in the 
case of tree‑similarity‑based methods, different sets of 
genomes should be used to build the phylogenetic pro‑
files, depending on the type of interactions or functional 
relationships that are being predicted.

Hybrid residue–protein methods
So far, we have separated co‑evolution‑based methods 
into two classes: those that use the MSA of a single  
protein family to detect (intra‑protein) residue  
co‑evolution and those that use MSAs of two families to 
detect inter‑protein co‑evolution, including the search 
for the interaction region of proteins known to interact 
and the search in complete genomes for the interaction 
partners of a given protein. However, intra‑ and inter‑
protein co‑evolution are two related phenomena that 
involve similar physical interaction forces and evolution‑
ary constraints, thus the global co‑evolution observed 
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Genetic saturation
Apparent reduction with time 
of the observed divergence 
between two genes owing  
to factors such as reversed  
or convergent mutations.

between two proteins could be (at least partially) 
explained by a set of co‑evolving inter‑protein pairs of 
residues. Indeed, various methods for detecting residue 
co‑evolution have also been used to detect residues at 
the interfaces of inter‑protein interactions11–17. Therefore, 
although historically separated, inter‑ and intra‑protein 
co‑evolution‑based methods and their applications are 
closely related and share conceptual and methodological 
similarities, such as the idea of disentangling direct from 
indirect co‑evolution.

Furthermore, these two classes of methods can be 
combined: for example, by methods that infer protein 
co‑evolution on the basis of the accumulation of inter‑
protein residue co‑evolutions. Of note, the in silico two‑
hybrid (i2h) system88 uses the balance between inter‑ and 
intra‑protein residue correlations to estimate the inter‑
action potential of two protein families. This idea has 
been developed into more sophisticated methods, such 
as one developed by Burger and van Nimwegen14, which 
more effectively deal with paralogous and orthologous 
relationships to improve the results. Similarly, a method 
developed by Yeang and Haussler13 simultaneously 
detects interacting proteins with co‑evolving residues 
that participate in their interfaces. The accumulation of 
correlated mutations has also been used to locate the best 
mapping between the members of two interacting fami‑
lies, taking the set of links that maximizes the number of 
inter‑protein correlations89.

Discussion
We have reviewed the main classes of co‑evolution‑
based methods and have highlighted those that have 
shaped the field, notwithstanding the many other 
implementations that have been important in develop‑
ing what is still an open area. This overview highlights 
how co‑evolutionary signals are influenced by the avail‑
able phylogenetic information associated with the pro‑
tein families and how the different co‑evolution‑based 
methods deal with this problem (FIG. 2). Whereas for  
the methods that study pairwise co‑evolutions (both at the  
residue and protein levels) it is essential to correct  
the phylogenetic background to identify the specific signals  
related with direct protein or residue interactions, the 
approaches aimed at detecting groups of co‑evolving res‑
idues (for example, SDPs) use this phylogenetic informa‑
tion to detect groups of residues that are concomitantly 
involved in a concerted role. These different strategies 
provide alternative views of the role of co‑evolution in 
defining the actual evolutionary landscape of intra‑ and 
inter‑protein interactions. Co‑evolution contributes to 
the functional and evolutionary divergence by permit‑
ting the maintenance of interactions while simultane‑
ously allowing the variation of the interacting partners. 
For example, this can avoid undesired crosstalk with 
recently appeared signalling pathways, or it can maintain 
the interaction with a rapidly evolving protein.

There are scientific and technical limitations that 
must be overcome by the methods. The quality of MSAs 
is obviously essential as they serve as the initial input to 
most of the methods. Furthermore, the methods work 
better on large protein families for which the degree of 

sequence similarity has a wide but homogenously dis‑
tributed range from distant to similar sequences. In 
particular, some of the more recent approaches require 
densely populated alignments with thousands of 
sequences. In general, optimal performance is obtained 
when protein subfamilies (branches of the tree) are 
spaced at regular intervals, whereas most approaches 
(particularly SDP‑related methods) tend to fail in the 
extreme case of protein families with a star‑like family 
tree in which all sequences are equidistant. Furthermore, 
predicting protein interactions has additional practical 
constraints in that the MSAs of the two potential inter‑
actors have to include orthologous sequences coming 
from the same set of species (see Box 4 in Supplementary 
information S1 (boxes)). Together with the alignments, 
another basic requirement for many of the methods is 
the adequate treatment of phylogenetic information. For 
example, assembling phylogenetic trees is confounded 
by complex evolutionary scenarios, such as sequences 
acquired by horizontal gene transfer, genetic saturation 
or the difficulties in identifying the correct orthologous 
sequences when genome duplication and domain rear‑
rangements have occurred. Another clear limitation to 
the progress in this field is the need to compare methods 
systematically, particularly for large‑scale protein inter‑
action predictions. Blind tests with hidden gold stand‑
ards will be the best way to facilitate the appropriate use 
of the methods.

An additional difficulty in the field is the confusion 
in the terminology used for describing what is observ‑
able in an MSA versus the underlying evolutionary phe‑
nomenon. We have proposed to differentiate between 
the well‑documented and clearly observable phenom‑
enon of ‘co‑evolution’ and the more elusive concept of 
‘co‑adaptation’ between co‑evolving components44,45. 
In this definition, co‑evolution would be confined to 
the observation of concerted patterns of co‑variation 
derived from MSAs without implying reciprocal evolu‑
tionary events. By contrast, co‑adaptation implies evo‑
lutionary reciprocity as the causal phenomenon behind 
the observed co‑evolution. In this sense, co‑adaptation 
would be referring to, for example, the compensatory 
changes required for maintaining residue or protein 
interactions. A more detailed discussion of the con‑
tribution of co‑adaptation to the observed patterns of 
co‑evolution can be found elsewhere44,45.

Another fundamental problem in the field is to dif‑
ferentiate the direct relationships from the indirect cou‑
plings caused by them, a problem tackled by a number 
of approaches38,39,41,71. This disentanglement helps the 
functional interpretation of the relationships: direct cou‑
plings suggest physical interactions between residues or 
proteins, whereas pairings regarded as indirect couplings 
could indicate clusters of interacting residues, chains of 
residues participating in allosteric transmission or (at 
the protein level) signalling pathways, protein complexes 
and functional clusters. The methodological advances 
have set the scene for the characterization of co‑adaptive 
relationships that take place in complex molecular sys‑
tems and that might only be truly understood at a net‑
work level, such as networks of residues participating in 
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