
The genotype –phenotype relationship is fundamental to 
biology. For decades this relationship has been subjected 
to mostly argument, speculation and qualitative analysis. 
However, our ability to fundamentally understand the 
genotype–phenotype relationship began to change in  
the mid 1990s, on completion of the first bacterial 
genome-sequencing projects. Full genome sequences 
provide comprehensive, albeit not yet complete, infor-
mation about the genetic elements that create an 
organism. A detailed understanding of some cellular 
processes, such as metabolism, has resulted in struc-
tured knowledge bases that can be mathematically repre-
sented1–3. This mathematical representation enables the 
computation of phenotypic states4–7 based on genetic and 
environmental parameters. Remarkably, this provides a 
mechanistic representation of the microbial metabolic 
genotype–phenotype relationship.

Constraint-based models of genome-scale metabolic 
networks capture the genotype–phenotype relation-
ship by simultaneously accounting for constraints 
that are imposed on phenotype by physicochemical 
laws and genetics. The realization that these quantita-
tive genotype–phenotype relationships could be con-
structed from a genome has driven the emergence of 
this area of research, and the flood of increasingly rich 
high-throughput data has accelerated the evolution of 
constraint-based reconstruction and analysis (COBRA) 
methods from a set of basic tools for metabolic network 

analysis into a powerful analytical framework that is 
increasingly used. Here, we describe basic features of the 
COBRA framework, the ‘phylogeny’ of evolving COBRA 
methods and the COBRA ‘ecology’ (that is, how  
COBRA methods complement each other in answering 
larger questions in biology).

Constraint-based modelling defined
The COBRA approach is based on a few fundamen-
tal concepts. These concepts include the imposition 
of physicochemical constraints that limit computable 
phenotypes (FIG. 1a–d), the identification and math-
ematical description of evolutionary selective pressures 
(FIG. 1e), and a genome-scale perspective of cell metabo-
lism that accounts for all metabolic gene products in a 
cell (FIG. 1d,f). These fundamental concepts are briefly 
described below.

Constraints on reaction networks. Metabolism is a 
complex network of biochemical reactions. The reaction 
occurrence is limited by three primary constraints: sub-
strate and enzyme availability, mass and charge conser-
vation, and thermodynamics. For metabolic reactions, 
substrates must be present in the microenvironment of 
the cells or produced from other reactions, and enzymes 
must be available. Mass conservation further limits the 
possible reaction products and their stoichiometry, and 
thermodynamics constrains reaction directionality. 
For a given organism, this information can be obtained 
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Abstract | Reconstructed microbial metabolic networks facilitate a mechanistic description 
of the genotype–phenotype relationship through the deployment of constraint-based 
reconstruction and analysis (COBRA) methods. As reconstructed networks leverage genomic 
data for insight and phenotype prediction, the development of COBRA methods has 
accelerated following the advent of whole-genome sequencing. Here, we describe a 
phylogeny of COBRA methods that has rapidly evolved from the few early methods, such as 
flux balance analysis and elementary flux mode analysis, into a repertoire of more than 100 
methods. These methods have enabled genome-scale analysis of microbial metabolism for 
numerous basic and applied uses, including antibiotic discovery, metabolic engineering and 
modelling of microbial community behaviour.
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Figure 1 | Fundamentals of the genome-scale metabolic genotype–
phenotype relationship. The constraint-based reconstruction and 
analysis (COBRA) approach is based on three primary fundamental 
concepts: network constraints (parts a–d), objective functions (part e) 
and the association of reactions with the genome (part f). a | A complex 
mixture of molecules (red) can react to yield end products (blue).  
In the model, metabolites enter the system through boundary 
pseudoreactions (b) and are metabolized in internal reactions (v) with a 
flux of V. b | The stoichiometry of this reaction network is described 
mathematically in a stoichiometric matrix, with each column 
representing the stoichiometry of a reaction. Negative and positive 
values represent reactants and products, respectively. Reaction flux  
is limited by thermodynamics and catalytic capacities (V

m
 and V

m,r
 

represent V
max

, the velocity of the forward and reverse enzyme-catalysed 
reactions, respectively, at an infinite concentration of substrate), 
described by upper and lower bounds on flux for each reaction.  
c | Reaction constraints result in a ‘solution space’ that contains all 

feasible flux distributions. Additional constraints (for example, mass 
balance, the steady-state assumption and measured metabolite 
consumption rates) reduce the space of feasible flux distributions,  
as shown by the pink line. d | In vivo biochemical networks involve 
additional complexity. Gene regulation can change the abundance of 
catalysts (for example, the transformation of D to E). Often, components 
are also localized in different organelles (for example, E and F), thereby 
blocking reactions. e | The biomass objective function describes an 
evolutionary pressure for microbial growth, and describes the metabolic 
demands to make the basic metabolite building blocks for all cellular 
components (for example, membranes, macromolecules, ATP, and so on). 
f | The association of metabolism with the genome is carried out by 
mathematically linking the genome to transcripts, proteins and 
chemical reactions. The gene–protein–reaction schema is used to 
describe gene association in the models and provide an interface for  
the integration of high-throughput data. ChIP–seq, chromatin 
immunoprecpitation followed by sequencing.

R E V I E W S

292 | APRIL 2012 | VOLUME 10  www.nature.com/reviews/micro

© 2012 Macmillan Publishers Limited. All rights reserved



Metabolic reconstruction
A carefully curated and 
biochemically validated 
knowledge base in which all 
known chemical reactions for 
an organism are detailed and 
catalogued.

Solution space
The feasible region satisfying  
a set of constraints. In 
constraint-based 
reconstruction and analysis 
(COBRA) models, this 
represents the feasible flux 
values for all of the reactions  
in the model.

Flux distributions
A set of steady-state fluxes  
for all of the reactions in a 
metabolic network.

Biomass function
A pseudo-reaction that is 
formed to aid in predicting  
the growth of a cell in 
constraint-based 
reconstruction and analysis 
(COBRA) models. It describes 
the rate at which and accurate 
proportions in which all of the 
biomass precursors are made.

Linear programing
A mathematical optimization 
technique that determines a 
way to maximize a particular 
linear objective under a given 
set of conditions (that is, when 
subjected to linear equalities 
and inequalities as constraints). 
Typically used in flux balance 
analysis, in which the objective 
is often the biomass function 
(growth) and the constraints 
represent the growth 
conditions.

Genome-scale model
(GEM). A condition-specific, 
mathematically described, 
computable derivative of a 
metabolic reconstruction, 
containing comprehensive 
knowledge of metabolism.

from careful biochemical and genetic studies or inferred 
from related organisms, and then catalogued in metabolic 
reconstruction knowledge bases1,2.

In the COBRA framework, a metabolic reconstruc-
tion is converted into an in silico model by mathemati-
cally describing the reactions and adding network inputs 
and outputs (for example, uptake and secretion of prod-
ucts). Similarly to a cell having one genome and many 
transcriptional states, an organism has one metabolic 
reconstruction from which context-specific models can 
be derived, each representing cellular functions under 
different conditions.

Physicochemical constraints on the metabolic net-
work are mathematically described by a matrix repre-
senting the stoichiometric coefficients of each reaction8 
(FIG. 1a,b). Known upper and lower bounds on each 
reaction flux are imposed as additional constraints. 
Mathematically, these constraints define a multi-
dimensional ‘solution space’ of allowable reaction flux 
distributions, and the actual expressed flux state resides 
in this solution space. Additional constraints can fur-
ther shrink the solution space to focus in on the actual 
flux state of the network (FIG. 1c). These additional con-
straints may include enzyme capacity, spatial localiza-
tion, metabolite sequestration, and multiple levels of 
gene, transcript and protein regulation (FIG. 1d).

A mathematical statement of cell objectives: a reflection 
of evolution. In non-biological chemical networks, the 
material flow through pathways can be predicted in a 
cause and effect manner, using mathematical models that 
describe the associated physical laws. This description is 
time invariant, as reproducing the physical conditions 
will always drive flux through the same pathways. By 
contrast, causation in biology is time variant. A plethora 
of chemical reactions may occur inside a cell, and many 
pathways can link a starting molecule to a given product. 
However, regulatory mechanisms have evolved to select 
when and where pathways will be used in an organism 
under a given set of conditions. Thus, if the cellular 
objectives that drive evolution are understood or can be 
inferred, optimal flux states of biochemical reaction net-
works can be predicted. In the COBRA framework these 
cellular objectives are described mathematically and used 
to compute phenotypic states.

Many cellular objectives can be defined in the con-
text of metabolism. For example, as a proxy for growth, a 
biomass function9 can be defined, containing all the neces-
sary precursors for synthesizing the cell components for 
growth (for example, amino acids for proteins and nucleic 
acids for RNA) (FIG. 1e). The biomass function and other 
objective functions can be used with optimization algo-
rithms such as linear programing10,11 to predict metabolic 
pathway usage and cellular phenotypes11. As these objec-
tive functions mathematically state cellular aims and can 
predict phenotypes, they capture the pressures guiding 
evolution and therefore represent agents of causation in 
biology. The objective function is thus an important part 
of the COBRA framework. It is not directly based on fun-
damental physical principles, but is based on biological 
functions that are selected for over many generations.

A genome-wide basis for modelling metabolism. 
Constraint-based modelling has rapidly developed 
since the advent of whole-genome sequencing12,13. A 
genome provides the genetic basis for the metabolic 
network of an organism, and genome annotation 
defines the relationships between genes, enzymes and 
the reactions that they catalyse14 (FIG. 1f). Annotated 
genomes and their associated biochemical and genetic 
data have facilitated the development of carefully 
curated metabolic network reconstructions containing 
thousands of reactions. When a reconstruction knowl-
edge base for an organism is converted into a genome-
scale model (GEM), the mathematical representation 
provides constraints, and the objective function can 
be used to represent the optimal biological functions 
that the organism strives to achieve. Thus, simulation 
of an organism’s phenotypes can be performed using 
its GEM.

The genome-scale view of metabolism in these mod-
els has two primary implications. First, in principle, the 
models account for all known metabolic genes in a cell 
and their functions. Thus, when used in the analysis 
of genome-scale data sets (for example, proteomics, 
metabolomics, and so on)15, they provide novel insight 
because they account for real chemical connections 
between components (FIG. 1f). Second, as metabolic genes 
are associated with the biochemical functions of their 
gene products, simulations of metabolite flow through 
the network can provide mechanistic predictions of how 
each gene product affects the metabolic network func-
tion. Thus, cell phenotypes can be computed and data 
can be interpreted with GEMs, providing mechanistic 
insight into how the cell genotype may contribute to the 
cell phenotype.

A phylogeny of constraint-based methods
COBRA methods have ‘evolved’ and ‘diversified’ over the 
past decade, leading to more than 100 different methods 
(see Supplementary information S1 (table) and http://
sourceforge.net/apps/mediawiki/opencobra/), many 
of which have been implemented in available software 
packages (see Supplementary information S2 (table)). 
These developments may be likened to an evolution-
ary process in which specific scientific questions have 
selected for algorithmic innovations, yielding a phylo-
genetic tree of COBRA methods (FIG. 2). Below, we 
classify these methods into major groups and describe 
examples that address the broader scientific questions.

Global characterization of solution spaces. Metabolic 
pathways are conceptual abstractions that group reac-
tions. However, sometimes these pathways fail to reflect 
actual metabolic network usage16, as textbook pathways 
often reflect the order of enzyme discovery or pathway 
usage in one model organism. Fortunately, through com-
putational analysis of metabolic networks, the required 
pathways for specific metabolic functions can be identi-
fied without biases from traditional pathway concepts. In 
constraint-based modelling, this is approached through 
unbiased and biased methods, represented by the  
two primary branches of the phylogenetic tree (FIG. 2). 
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Unbiased methods describe all steady-state flux distri-
butions, including reaction sets that function together 
without belonging to the same traditional pathway 
concepts.

Two such unbiased approaches, elementary flux 
mode (EFM) analysis and extreme pathway (ExPa) 
analysis, globally characterize allowable phenotypes and 
have been reviewed and compared previously17–19. These 
methods identify reaction sets (that is, pathways) that 
achieve specific metabolic functions, and combinations 
of these reaction sets describe the entire solution space 
(that is, all steady-state phenotypes). These two unbiased 
methods have been used for many different ends. For 

example, in studies of Escherichia coli metabolism they 
have helped assess global pathway regulation20, facilitated 
the design of an ethanol-secreting strain21, identified 
synthetic-lethal gene interactions22 and demonstrated 
the trade-off between reducing translation costs and 
rapidly responding to environmental changes23. These 
methods are usually applied to small models or por-
tions of GEMs24, because their computational com-
plexity scales exponentially25,26. However, their use on 
larger models is becoming possible through simplifica-
tions that, for example, calculate a subset of potential 
pathways or find minimal pathways that accomplish a  
biological function27–30.

Figure 2 | The ‘phylogeny’ of constraint-based modelling methods. Over the past few years, the repertoire of tools 
for constraint-based reconstruction and analysis (COBRA) modelling has rapidly expanded. Because of the versatility and 
scalability of COBRA models, more than 100 methods have been developed for their prediction and analysis, all based on 
analysis of the underlying metabolic network structure (that is, the stoichiometric matrix). A phylogenetic tree is used to 
depict the similarities between the applications and uses of these methods, and the underlying algorithms for many of the 
methods. See Supplementary information S1 (table) for a more complete list of methods and descriptions, and for 
definitions of abbreviations.
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Mixed-integer linear 
programing
(MILP). Similar to linear 
programing, but some of the 
constraints are integer values. 
Used for applications such as 
enumerating alternative 
optimal solutions, strain 
design, eliminating loops,  
and so on.

Alternative approaches can also describe the entire 
solution space in an unbiased manner31,32. For example, 
Markov chain Monte Carlo (MCMC) sampling methods32 
characterize all feasible steady-state reaction fluxes. This 
provides a probability distribution of feasible fluxes for 
each reaction under the user-provided growth condi-
tions. These methods have provided insight into several 
biological properties, such as the high-flux backbone of 
central metabolism in E. coli33, condition-specific regu-
lation of metabolism in yeast34,35 and E. coli 36, and dis-
ease states in cardiac myocytes37, erythrocytes38 and the 
human brain39.

Finding the ‘optimal’ metabolic state with flux balance 
analysis methods. EFM, ExPa and MCMC methods 
characterize all the flux states that a metabolic network 
can deploy. However, a cell does not use most of the pos-
sible flux states. Thus, biased COBRA methods include 
the optimization of an objective function to identify 
physiologically relevant flux distributions. Flux balance 
analysis (FBA) is the most basic and commonly used 
biased method for simulating genome-scale metabolism. 
In FBA, the cellular objective is defined, and metabo-
lites in the media are supplied to the metabolic network. 
Using linear programing, an objective function (for 
example, the biomass objective function) is optimized 
subject to the constraints imposed by the metabolic net-
work and metabolite uptake rates10,11,40. This calculation 
finds one solution in the solution space that is believed to 
best represent the true cellular phenotype. The solution 
includes a prediction of the optimal objective magnitude 
(for example, biomass yield or growth rate) and potential 
flux values for each reaction (FIG. 3a).

FBA successfully makes quantitative predictions 
using a few governing constraints on the model. For 
example, a pre-genome era application of FBA reca-
pitulated the acetate overflow phenotype of E. coli41, in 
which acetate is excreted at high growth rates. Using 
GEMs, FBA has since predicted growth rates42, pathway 
usage43,44 and the effect of gene expression noise on fit-
ness45. It has allowed the analysis of complex phenotypes, 
such as metabolism in non-growing cells46, and numer-
ous variations on FBA have been developed to assess 
alternative optimal solutions or to account for additional 
constraints on metabolic flux in cells (FIG. 2).

Predicted flux values from FBA can vary owing to 
there being alternative optimal solutions (that is, the 
same objective value using different reactions) (FIG. 3b). 
Alternative optimal solutions are enumerated using 
mixed-integer linear programing (MILP)47, and the ranges 
spanned by alternative optima are found for each reac-
tion using flux variability analysis48,49 (FIG. 3b). The 
consideration of all alternative optima is crucial when 
interpreting an FBA solution, as the flux through a sin-
gle reaction can vary considerably depending on which 
solution is found. For example, the COBRA method 
minimization of metabolic adjustment (MOMA)50 
predicts a new flux vector and objective value after a 
perturbation (for example, a gene deletion). To do this, 
MOMA computes one ‘wild-type’ FBA solution and 
finds the nearest solution after perturbing the network 

(that is, the minimum change to the reaction fluxes from 
the FBA solution). As the new predicted flux vector and 
growth rate can differ considerably depending on which 
alternative optimal solution is used (FIG. 3b), all possible 
results from alternative optima must be assessed.

To identify realistic microbial phenotypes in FBA 
predictions, additional biologically relevant constraints 
have been proposed. These include constraints imposed 
by metabolite dilution51, changes in transcript level52,53 
and economy in enzyme use43,54–56. These FBA refine-
ments further decrease the range of feasible reaction 
fluxes to obtain solutions closely resembling cellular 
physiology under certain growth conditions. For exam-
ple, constraints from enzyme crowding have been applied 
to FBA solutions (FBAwMC)57,58. In FBAwMC, reaction 
flux is constrained to reflect internal spatial limitations 
on enzyme abundance in the crowded cytoplasm. This 
method predicted that molecular crowding contributes to 
substrate preferences in E. coli57. In a medium with mul-
tiple carbon substrates, FBAwMC accurately predicted 
that glucose would be preferentially consumed, followed 
by mixed-substrate consumption and a late utilization of 
glycerol and the excreted acetate (FIG. 3c), suggesting that 
molecular crowding contributes to substrate preference. 
A similar variation on FBA, FBAME, accounts for cyto-
plasmic membrane crowding by limiting the flux through 
the glucose transporter and the three cytochromes in 
E. coli59. This constraint recapitu  lated the simultaneous 
use of respiratory and fermentative pathways and pre-
dicted the effect of glucose and oxygen availability on 
cytochrome oxidase expression. Thus, the imposition 
of crowding constraints on metabolic flux has provided 
additional insights into cell physiology57–59.

Modelling genetic perturbations. As genome-scale 
metabolic networks capture the activities of hundreds 
of enzymes, mutant phenotypes can be assayed through 
in silico gene perturbation and simulation. For the first 
GEMs12,13, such approaches demonstrated the predic-
tive power of COBRA methods when metabolic genes 
were ‘knocked out’ in the model by restricting flux 
through their associated reactions. When the growth 
of E. coli mutants was simulated with FBA, 86% of the 
mutant phenotypes (that is, growth or no growth) were 
accurately predicted13. This success rate exceeded any 
other phenotype-predicting algorithm available at the 
time. Subsequent studies have identified growth condi-
tions60 and genetic backgrounds61 for which genes in 
Saccharomyces cerevisiae are conditionally essential. For 
example, combinations of gene knockouts were simu-
lated and tested for essentiality. This demonstrated that 
74% of yeast metabolic genes contribute to essential 
metabolic processes, and most of these are masked by 
isozymes and alternative pathways61. To address addi-
tional questions concerning gene deletion, new methods 
have been introduced such as MOMA50, regulatory on–
off minimization (ROOM)62 and metabolite essentiality 
analysis (MEA)63 (FIG. 2).

Gene and reaction perturbation studies have aided 
health-related applications such as prediction of  
the metabolic side effects of off-target protein–drug 
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interactions64 and prediction of novel antimicrobial 
targets65. For example, MEA63 was applied to the Vibrio 
vulnificus GEM66 to identify potential antibiotic targets 
for this pathogenic relative of Vibrio cholerae. MEA was 
used because it identifies metabolites that, if removed, 
inhibit biomass production. These metabolites could 
possibly be blocked in vivo with analogues that bind or 
modify active sites on their associated enzymes. This 
analysis identified five metabolites as potential antibiotic 

targets, and only 352 analogues had to be tested for anti-
microbial properties, allowing for a smaller screen than 
would commonly be required for drug discovery. One 
of the screened molecules with antimicrobial properties 
was subjected to additional analysis, and this candidate 
molecule considerably out-performed sulphamethoxa-
zole, an existing therapeutic for V. vulnificus infection. 
Although additional drug safety assessment and opti-
mization is required for this candidate drug, this study 

Figure 3 | Flux balance analysis. a | In flux balance analysis (FBA), a cellular objective (for example, growth, as 
represented by the sum of all biomass precursors in the biomass function) is optimized. This provides the predicted flux for 
each reaction in the network. S is the stoichiometric matrix, v is a vector of all reaction fluxes, and S∙v = 0 is the steady state 
assumption showing that all reaction fluxes are balanced. b | FBA solutions are typically not unique — that is, there are 
alternative optimal solutions that use different pathways to achieve the same objective value (for example, growth rate). 
Additional constraints can be applied to reduce the solution space size, and these may remove competing optimal 
solutions (right) or change the optimal solution (bottom). If the optimal solution is moved, then the choice of the new 
optimal solution may depend on the solver and/or algorithm. For example, FBS will find the new optimal objective value 
(red) following a change in constraints. However, the minimization of metabolic adjustment (MOMA)50 method may 
predict various objective values (blue) depending on which alternative optimal value (pink) is initially used. c | The addition 
of constraints can enhance predictions. For example, when constraints on molecular crowding are added to FBA 
(FBAwMC), the model-predicted order of substrate metabolism is consistent with experimental observation. NTPs, 
nucleotide triphosphates; FVA, flux variability analysis; V

m
, the velocity of the enzyme-catalysed reaction at an infinite 

concentration of substrate; μ
max

, predicted maximum growth rate. Panel c image is reproduced, with permission, from 
REF. 57 © (2007) US National Academy of Sciences.
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demonstrates how COBRA methods can guide antibiotic 
screens and provide immediate insight into the mode of 
action of a drug.

In silico design of production strains. Metabolic engi-
neering approaches often perturb and screen cells for 
desired phenotypes. However, engineered strains can 
decrease product yield over time, as products drain cel-
lular resources. Thus, several COBRA methods aim to 
predict the perturbations (for example, gene deletions or 
additions) that would force the strain to couple product 
yield to a cellular objective. For example, the secretion 
of a product can be coupled to growth if the product 
precursor provides an essential biomass component and 
if pathways that would metabolize the desired product 
are removed. Thus, as cells grow exponentially, they can 
actually increase productivity67 (FIG. 4a).

Most COBRA methods of strain design system-
atically identify reactions that, when perturbed, may 
couple a product to a selective pressure (FIG. 2). The 
production capabilities of a strain can be shown with 
a production envelope, which is a plot of the bounds 
of all possible product secretion rates and their associ-
ated feasible growth rates (FIG. 4b). As there is selection 

for fast growing cells that minimize product secretion 
(FIG. 4b, white circle), OptKnock68 employs MILP on a 
wild-type model to find reaction deletions that force 
product secretion under the maximum growth rate for 
the mutant, indicated by a non-zero production rate  
in the production envelope when growth rate is maxi-
mized (FIG. 4b, blue circle). However, as OptKnock opti-
mizes both the biomass objective function and product 
yield, strain designs occasionally have alternative optima 
with other secretion products, leading to a potential low 
product secretion rate (FIG.4b, green circle). To avoid 
this, the product can be added to the biomass function 
(called objective tilting69) or MILP can be applied (using 
RobustKnock70) to find designs that provide the maxi-
mum lower bound on product yield while maximizing 
growth (FIG.4b, red circle).

For algorithmic simplicity, most strain design meth-
ods perturb reactions. However, strain designs that are 
based on reactions can require additional gene deletions 
to remove relevant isozymes. Moreover, predictions are 
occasionally not feasible when they require the removal 
of one reaction that is catalysed by a multispecific enzyme 
(FIG. 4c). To avoid such predictions, heuristic approaches 
such as OptGene71 and genetic design through local 

Figure 4 | Principles of model-guided strain design. a | Non-growth-coupled (classic) production strains exhibit a 
decrease in product yield over time, whereas growth-coupled (biomass-coupled) strains can enhance product yield. 
b | Designs for growth-coupled strains are predicted to force product secretion while allowing optimal growth of the 
organism. Several methods have been developed to predict strains that undergo growth-coupled production, and these 
methods model reaction deletion, gene deletion or reaction addition. Different reaction deletion algorithms, such as 
OptKnock68, objective tilting69 and RobustKnock70, can provide different optimal growth-coupled-strain designs owing to 
algorithmic differences. c | Many algorithms predict the set of reactions that must be blocked (or deleted) to obtain a 
desired product. However, methods such as OptGene71 and genetic design through local search (GDLS)72 provide a more 
realistic view by modelling genetic modifications, as some genes catalyse multiple reactions and some reactions are 
spontaneous. μ

max
, predicted maximum growth rate.
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search (GDLS)72 identify strain designs that directly 
involve gene deletions to give growth-coupled produc-
tion of a desired product. Thus, these strain designs are 
more realistic and easier to test in vivo.

Strain design predictions are not limited to manipu-
lations of the metabolic pathways encoded by the host 
cell. The repertoire of products may be expanded in silico 
by adding genes from other organisms to confer novel 
metabolic functions. In silico methods have used graph 
theoretical approaches73,74 or kinetic parameters75 to 
build novel biosynthetic pathways, which were sub-
sequently tested or ranked using COBRA methods. 
Unfortunately, without accounting for the metabolic 
network of the host, these approaches cannot guarantee 
growth-coupled-strain designs. Thus, without further 
engineering (for example, using scaffolds that physically 
couple enzymes76), predicted biosynthetic pathways may 
not yield a product in vivo. However, this concern has 
been addressed through a few approaches, such as by 
manually removing genes to couple the new pathways to 
growth75, or systematically following pathway prediction 
with OptKnock77. OptStrain goes further by conducting 
a novel pathway search within the metabolic network of 
the host to optimize the balance between reaction addi-
tion and deletion78. Thus, COBRA approaches allow the 
coupling of non-native product synthesis to a cellular 
objective.

The concept of designing strains that couple a prod-
uct to a defined selective pressure is intriguing, and a 
few COBRA-based in silico predictions have in fact been 
implemented in vivo67,77. It is anticipated that these tools 
will continue to aid metabolic engineering projects.

Refining representations of biological causation. 
Simulating cell phenotypes requires accurate representa-
tions of metabolic network stoichiometry and objective 
functions. Although metabolic reconstructions are usu-
ally carefully built and rigorously tested, they are often 
incomplete and may contain a few errors in stoichi-
ometry, thermodynamics, gene associations or biomass 

composition as a result of ambiguities in the associated 
biochemical studies79 or genome annotation80. Moreover, 
biomass composition and cellular objectives can vary 
between environments81,82, especially under nutrient 
limitation or stress and during stationary phase46,83. To 
address these concerns, phenotypic screens have been 
analysed with gap-filling COBRA methods (FIG. 2) to pre-
dict missing pathways84,85, to identify incorrect reaction 
directionality or inclusion79,86–88 and to suggest subcel-
lular reaction localizations in microorganisms with mul-
tiple organelles89. Complementary COBRA methods also 
improve the definition of cellular objectives by integrat-
ing data to systematically assess90–92, predict93 or modify 
objective functions79,81,87.

Recently, high-throughput genetic-interaction 
screens have helped refine metabolic networks and the 
biomass objective function of yeast79,94. For example, 
model-predicted epistasis in S. cerevisiae was compared 
with 176,821 experimentally measured genetic inter-
action pairs. Although the COBRA model predictions 
were enriched for high-confidence measured genetic 
interactions, this method did not predict many epistatic 
interactions. An algorithm was developed to reconcile 
discrepancies between model-predicted and experimen-
tally measured interactions, and several of the resulting 
predicted model improvements were experimentally 
validated. For example, it was found that the forma-
tion of quinolinate from aspartate had been mistakenly 
included in the yeast reconstruction. In addition, the 
algorithm predicted that glycogen should be removed 
as an essential component in the biomass objective func-
tion, as it is not essential for growth. Thus, this study 
demonstrates that COBRA methods could be deployed 
to improve the model of the yeast metabolic network 
so that it better predicts the in vivo phenotype and con-
tains condition-specific updates to the biomass objective 
function.

Thermodynamics. COBRA methods provide quantita-
tive predictions without detailed parameterization of 
each reaction, beyond declaring the direction of a reac-
tion to reflect reaction thermodynamics. Reaction direc-
tionality is often determined from biochemical assays, 
but such assays may not recapitulate the conditions and 
metabolite concentrations inside the cell. Therefore, 
the reaction directionality in vitro may be inconsistent 
with in vivo flux. In addition, unrealistic fluxes can be 
predicted in silico if a reaction is reversible in a model 
but irreversible in vivo. Thus, methods are now apply-
ing more rigorous thermodynamic constraints (FIG. 2)  
by removing thermodynamically infeasible pathway 
uses95–97 or constraining flux according to Gibbs free 
energy calculations54,98,99. Methods are also being used 
to infer thermodynamic parameters100.

Most COBRA models contain sets of reactions that 
can cycle metabolites among themselves (FIG. 5a). In these 
cases, FBA cannot predict flux values for the reactions, 
because their metabolites are cycled infinitely. Such 
‘loops’ are biologically unrealistic, as no net thermo-
dynamic driving force exists, akin to Kirchhoff ’s sec-
ond law for electrical circuits. Thus, the net flux around 

Figure 5 | Refining thermodynamic constraints. Thermodynamic constraints in 
constraint-based reconstruction and analysis (COBRA) models can be refined. a | For 
example, when a metabolic network is not adequately constrained, metabolites can 
cycle infinitely in loops. Akin to Kirchhoff’s loop law for electrical circuits, this property is 
thermodynamically infeasible (crosses). b | Thus, methods such as loopless flux variability 
analysis (ll-FVA), which uses the loopless COBRA96 constraints on FVA, are able to 
systematically remove these loops by adding a constraint that limits flux to the solution 
space regions that are not involved in these loops. V, reaction flux.
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these loops should be zero95. Although these loops do 
not often affect the non-loop reaction flux, their exist-
ence can upset some model predictions. Approaches to 
systematically remove loops have been proposed95–97. For 
example, loopless COBRA96 improves FBA solutions by 
employing MILP to cancel out loop flux (FIG. 5b).

Although loop removal methods can be easily 
deployed without extra parameterization, detailed ther-
modynamic approaches may provide more biologically 
meaningful reaction flux predictions. Thermodynamic 
parameters for many metabolites are not known. 
Fortunately, recent advances in group contribution the-
ory provide estimates of the Gibbs free energy of forma-
tion for metabolites in COBRA models101. With these 
predicted values, the standard Gibbs free energy change 
can be predicted for each reaction. These values can help 
determine the direction of reactions54,102, predict reason-
able concentration levels98 and allow the use of metabolite 
concentrations103 and of ranges for kinetic parameters99 as 
constraints. A recent study104 used estimated metabolite 
free energy values with experimentally measured equi-
librium constants to quantitatively assign directions to 
reactions. This approach also incorporated in vivo pH, 
temperature and ionic strength to quantitatively assign 
reaction directionality to the E. coli metabolic network. 
When the model-predicted and experimentally measured 
growth rates were compared, the quantitative assignment 
of directionality was found to result in model predic-
tions that matched experimental data, and qualitative 
directionality assignment was required only for certain 
reactions (for example, ABC and proton-coupled trans-
porters). As thermodynamics represents one primary 
model constraint that is necessary for accurate COBRA 
predictions, it is expected that further developments in 
this area will be of great importance to the field.

Incorporating regulatory constraints and signalling. 
Transcriptional regulation and signalling networks 
interface extensively with metabolism to produce cel-
lular phenotypes. By incorporating regulatory and 
signalling constraints into metabolic network models, 
interactions between the systems can be captured to 
enhance COBRA predictions. There are two primary 
paradigms for how regulatory constraints are imple-
mented in constraint-based models (FIG. 2). Either exper-
imental data are used to constrain flux through specific 
reactions52,53,105–108 (FIG. 6a), or a mathematical representa-
tion of transcription regulation109,110 or signalling111,112 is 
interfaced directly with the metabolic network to aid in 
modelling (FIG. 6b).

Not all pathways are active under all growth condi-
tions, and ’omic data can be used to constrain models 
accordingly52,53,105–108 (FIG. 6a). Methods such as GIMME105, 
Shlomi-NBT-08 (REF. 106) and model-building algorithm 
(MBA)107 each remove pathways that lack expression in 
’omic data to obtain functional models that are consistent 
with cellular gene or protein expression. These approaches 
have provided novel insights into and discoveries about 
tissue-specific human metabolism39,64,113,114. However, they 
were also recently used to model metabolic interactions 
between Mycobacterium tuberculosis and a macrophage81.

To expand model predictions beyond metabolism, 
regulatory mechanisms are being integrated with meta-
bolic models (FIG. 6b). Such integrated metabolic and 
regulatory models can improve phenotype predictions 
and even suggest novel regulatory interactions. This was 
carried out for the nutrient-controlled transcription-
regulatory network of S. cerevisiae115, which includes 
Boolean regulatory interactions between 55 transcription 
factors and 750 metabolic genes. This integrated regula-
tory–metabolic network could simulate growth under 
different environmental and genetic perturbations using 
regulatory FBA (rFBA). The model predicted new tran-
scription-regulatory interactions, and elucidated regula-
tory cascades using chromatin immunoprecipitation data 
and the binding motifs of transcription factors. Although 
integrated models of metabolism and transcription reg-
ulation provide improved phenotype predictions, this 
study shows they can also expand our knowledge of regu-
latory interactions. It is anticipated that such models will 
further aid in simulating metabolism under conditions 
for which ’omic data are not available.

Variations on rFBA have been suggested110,111. Despite 
their success, rFBA and related methods have two main 
weaknesses. First, they assume binary responses for all 
transcription-regulatory interactions, when real bio-
logical systems exhibit a range of behaviour in transcrip-
tion regulation, from binary to continuous. Second, few 
organisms have been studied enough to provide adequate 
regulatory information for rFBA. However, a method 
called probabilistic regulation of metabolism (PROM) 
addresses these concerns116. When ample transcriptomic 
data and candidate regulatory interactions (for exam-
ple, from chromatin immunoprecipitation followed by 
sequencing (ChIP–seq)) are available, PROM can build  
a probabilistic model of the transcription-regulatory  
network of an organism and integrate it with the meta-
bolic network, yielding an improved regulatory–metabolic 
network model. Moreover, PROM can apply interme-
diate responses (as opposed to binary ones), as it uses 
conditional probabilities for modelling transcription 
regulation instead of hard Boolean rules (FIG. 6c,d).

PROM was deployed to build the first integrated 
regulatory–metabolic network of M. tuberculosis116. Each 
transcription factor that modulates expression of meta-
bolic genes was systematically deleted from the model, 
and in silico growth phenotypes were compared with 
experimentally measured phenotypes. PROM correctly 
predicted 96% of the transcription factor-knockout phe-
notypes, including those for five of the six transcription 
factors that were essential for optimal growth. This indi-
cates that this method may help predict antibiotic targets 
from both regulatory and metabolic genes. Furthermore, 
the connections between the regulatory network and 
metabolism may represent novel regulatory targets for 
uncharacterized transcription factors.

An ecosystem of constraint-based methods
Individual COBRA methods can answer numerous sci-
entific questions. However, multiple methods can be 
deployed in parallel to obtain additional insights into a 
question of interest. Moreover, different models can be 
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easily swapped or combined to test hypotheses relevant to 
different species. Thus, by using a community of methods 
and several data types, deeper insights into more pro-
found questions may be attained. For example, COBRA 
methods have complemented each other and provided 
insight into the interactions in microbial communities.

The community structure in the microenvironment 
of an organism can shape the use of metabolic pathways. 
Organisms compete for scarce resources or depend on the 
metabolic capabilities of their cohabitants, and evolution 
often selects for cells that exploit this community struc-
ture117. COBRA methods are now characterizing the role 
for metabolism in microbial community structure118–120, 
and these studies are providing insight into mutual-
ism121, competition122, parasitism81,123 and community 
evolution117,124.

Mutualism. Synthetic mutualism between auxotrophic 
E. coli mutants was recently studied using COBRA meth-
ods121. The researchers grew pairs of auxotrophic mutants 

and then modelled their coupled metabolism using 
MOMA to identify mutant pairs that exchange essen-
tial metabolites to improve growth (FIG. 7a). FBA shadow 
prices demonstrated the balance between the cost (from 
metabolite loss) and the benefit (from receiving missing 
essential metabolites) to each rescued auxotroph. The 
cooperative efficiency (that is, the ratio of uptake benefit 
to production cost) recapitulated the observed growth of 
the co-cultures. Substantial increases in growth (FIG. 7b) 
were witnessed in co-cultures that exchanged beneficial 
but less costly metabolites (that is, in co-cultures that had 
higher cooperative efficiency). Although it is difficult  
to directly measure metabolite exchange between the 
auxotrophs, the computed cooperation efficiency pro-
vides an indirect quantitative assessment of the metabolite 
cross-feeding in this mutualistic system.

Competition. Metabolic competition for scarce nutri-
ents has also been assessed with COBRA methods. 
Dynamic multispecies metabolic modelling (DMMM) 

Figure 6 | Incorporating regulation. Two primary paradigms exist in constraint-based reconstruction and analysis 
(COBRA) modelling for integrating transcription regulation and metabolism. a | Algorithms such as GIMME105 and 
model-building algorithm (MBA)107 use high-throughput data and model simulations to identify which pathways were 
likely to be expressed and active in the cells when they were sampled. This results in a tailored, context-specific 
representation of the metabolic network. b | Algorithms such as regulatory flux balance analysis (rFBA)109, integrated FBA 
(iFBA)111 and steady-state regulatory FBA (SR-FBA)110 incorporate detailed mathematical representations of the known 
molecular mechanisms of transcription regulation. These approaches contain binary regulatory logic that dictates, under a 
specific signal, which metabolic pathways are suppressed and cannot carry flux. c | Hybrid methods such as probabilistic 
regulation of metabolism (PROM)116 are arising, in which transcriptomic and transcription factor (TF)-binding data are used 
to build a probabilistic regulatory–metabolic network. This allows for the elucidation of novel regulatory interactions and 
their immediate incorporation into model simulations. PROM also uses probabilistic measures to allow for a more 
continuous regulation of reaction flux. For example, gene 2 in the model shown is tightly regulated by a TF. Thus, when  
the TF is activated by a signal (green arrow), the reaction flux mediated by gene 2 is more tightly constrained than that 
mediated by gene 1, which is only loosely regulated. d | Whereas rFBA provides only binary, on–off constraints on reaction 
flux for these genes, the probabilistic measures in PROM allow for a more continuous regulation, as shown for genes 1 and 3. 
V

m
, the velocity of the enzyme-catalysed reaction at an infinite concentration of substrate.
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Figure 7 | Integrating constraint-based reconstruction and analysis methods to study community 
interactions. Constraint-based reconstruction and analysis (COBRA) methods are providing insight into the metabolic 
interactions in various types of microbial communities. a | To study the mutualistic behaviour of co-dependent mutant 
Escherichia coli, researchers used minimization of metabolic adjustment (MOMA)50 to simulate synergistic growth of pairs 
of auxotrophic E. coli. b | Shadow prices from flux balance analysis (FBA) simulations of these pairs were used to compute 
cooperation efficiencies between strains, which were subsequently compared with measured fitness improvements.  
c | Competition in communities was modelled using dynamic multispecies metabolic modelling (DMMM)122 to understand 
how communities of Geobacter sulphurreducens and Rhodoferax ferrireducens compete for resources, and how the 
demographics vary under different nutrient ratios, thereby affecting the efficiency of bioremediation efforts. d | Host–
pathogen interactions between Mycobacterium tuberculosis and a human macrophage were studied using COBRA. 
Although transcriptomic data were employed to build host–pathogen models at different stages of infection, the cellular 
objective of internalized M. tuberculosis is not known, so refinements to the objective function were predicted from 
transcriptomic data to account for changes in required amounts of compounds such as lipids and amino acids. e | This 
information was used to compute flux states of internalized M. tuberculosis with Markov chain Monte Carlo (MCMC) 
sampling32. This demonstrated a suppression of central metabolism and activation of the glyoxylate shunt, represented 
here by enolase and isocitrate lyase, respectively. f,g | The role of communities in evolution has been studied using reductive- 
evolution simulations117. In particular, this method predicted the minimal set of genes needed for Buchnera aphidicola (Ba) 
to grow in the rich innards of the aphid. The predicted minimal gene sets (part f) and temporal order of gene loss (part g) 
were consistent with the gene content and phylogenetic structure of several B. aphidicola variants. Ap, Acyrthosiphon 
pisum; Bfl, ‘Candidatus Blochmannia floridanus’; Bp, Baizongia pistaciae; Cc, Cinara cupressi; Eco, Escherichia coli;  
Sg, Schizaphis graminum.
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was used to characterize the competition for acetate, 
FeIII and ammonia between Geobacter sulphurreducens 
and Rhodoferax ferrireducens in subsurface anoxic envi-
ronments122 (FIG. 7c). DMMM simulated the growth rate 
of both organisms and the rates of change of external 
metabolites to dynamically predict population changes 
in the community. The community composition was 
predicted under geochemically distinct conditions of 
low, medium and high acetate flux. DMMM predicts 
that R. ferrireducens dominates the community when 
sufficient ammonia is available under low acetate flux, 
whereas G.  sulphurreducens dominates under low 
ammonia concentrations and high acetate flux. This 
difference was attributed to the nitrogen fixation abili-
ties of G. sulphurreducens, as well as to its acetate uptake 
rate being higher than that of R. ferrireducens. Moreover, 
it was also predicted that, under nitrogen-fixing condi-
tions, G. sulphurreducens increases its respiration at the 
expense of biomass production, thus showing how bal-
ancing community structure can affect the efficacy of 
uranium bioremediation in low-ammonium zones.

Parasitism. Host–pathogen interactions have also 
been studied with COBRA methods123. A recent study 
modelled the metabolic interactions between a human 
alveolar macrophage and M. tuberculosis81. Context-
specific models of infection were built with GIMME105 
and Shlomi-NBT-08 (REF. 106) using transcriptomic data 
from three types of M. tuberculosis infection. Next, the 
M. tuberculosis objective function was revised using 
infection-specific gene expression data to better rep-
resent the metabolic activity of the internalized patho-
gen (FIG. 7d). Gene deletion analysis was compared with 
in vivo gene essentiality data, and MCMC sampling 
was also used to demonstrate a substantial alteration in 
metabolic pathway use in M. tuberculosis during macro-
phage infection, including a suppression of glycolysis 
and an increased dependency on glyoxylate metabolism 
(FIG. 7e). This constraint of central metabolism during 
M. tuberculosis infection was also suggested by differ-
ential producibility analysis, a method that is related to 
FBA and identifies genes that affect the production of 
each metabolite in the metabolic network125. The sup-
pression of certain metabolic pathways and the concur-
rent increased dependency on normally latent pathways 
may provide novel antibiotic targets.

Community evolution. In evolution, genetic drift and 
selective pressures cause organisms to optimize their cel-
lular machinery for a particular niche126. This assump-
tion that cellular optimization occurs has made COBRA 
methods useful tools for investigating hypotheses con-
cerning organismal evolution, as reviewed recently6. 
In nature, the optimization of microbial metabolism 
is a multispecies affair, as demonstrated by the aphid 
endosymbiont Buchnera aphidicola. This member of 
the Enterobacteriaceae family has suffered drastic loss 
of genomic material as it evolved in the nutrient-rich 
innards of its host. B. aphidicola is related to E. coli, so 
a reductive-evolution simulation (a derivative of gene 
deletion analysis)117 was carried out on the E. coli model 

to provide predictions of the minimal metabolic gene 
set. These predicted minimal sets are highly consistent 
with the metabolic gene content of B. aphidicola (FIG. 7f). 
In addition, the predicted temporal order of gene loss 
is consistent with the phylogenetically reconstructed 
gene loss timing among the genomes of five B. aphidi-
cola strains124 (FIG. 7g), suggesting that the bacterium 
optimized its pathway use for its new rich habitat. 
Interestingly, metabolic pathways that are retained in 
the computed minimal gene sets highlight the role of 
this bacterium in symbiotic evolution. These retained 
pathways contain reactions that are needed for produc-
ing riboflavin and essential amino acids that are lacking 
from the aphid diet, thereby highlighting their role in 
the symbiotic relationship117. Thus, COBRA methods are 
helping to describe how the community shapes the gene 
content in evolving symbiotic communities6.

Future directions
Constraint-based modelling has rapidly evolved over 
the past two decades and now forms a foundation for 
achieving a genome-scale understanding of microbial 
metabolism. Before 2004, studies in this field focused 
on its conceptualization and algorithmic development. 
Thus, the methods developed were largely conceptual 
and used for studying the fundamental properties of 
metabolic networks, such as robustness, alternative 
optima and the functional consequences of metabolic 
network topology. After 2004, the field expanded to 
provide tools for addressing both basic and applied sci-
entific questions focused on issues such as strain design, 
gap-filling85 and evolution6. Despite the limitations in 
constraint-based modelling, its scope and uses are grow-
ing. GEMs and their corresponding analytical methods 
are expanding in scope beyond microbial metabolism, 
facilitating the analysis of ’omic data and directing  
scientific inquiry.

COBRA methods have gained rapid acceptance, 
because their focus on the governing constraints facili-
tates genome-scale analysis. However, the simplifying 
assumptions can also limit the scope of these tools. 
COBRA methods focus on steady-state flux, so the 
resultant models do not address metabolite concentra-
tions, changes in biochemistry from pH and single-
nucleotide polymorphisms, temporal metabolic changes 
or spatial constraints. Initial efforts are addressing some 
of the limitations and providing insight into these prop-
erties of metabolism58,103,105,122,127, and additional efforts 
will further address these and other limitations.

Metabolism is involved in most cell processes and 
phenotypes. However, genome-scale models are extend-
ing beyond microbial metabolism to include transcription 
regulation109,110,116, protein and transcript synthesis128,129, 
signalling112, plant and animal metabolism39,58,64,113,114,130,131, 
and host–pathogen interactions81,123,132. The advances 
beyond microbial metabolism provide additional targets 
for drug discovery and metabolic engineering133, and 
allow studies on medicine and crop engineering. This 
expansion of models and applications is requiring fur-
ther evolution of COBRA methods, as well as theoretical 
breakthroughs to integrate non-stoichiometric networks 
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(for example, transcription regulation) with metabolism 
and to account for interactions with spatial constraints 
(for example, multicell metabolism39,81,134).

The past decade has witnessed a deluge of high-
throughput data, including phenotypic screens, sequenc-
ing data, proteomics, metabolomics, and so forth. Recent 
studies have demonstrated that novel insights can be 
gained when these data are analysed in the context of 
GEMs34,39,64,79,113,125,135. As the models expand, they will 
increasingly aid in data interpretation, because they 
provide a structured context for high-throughput data 
analysis. Moreover, the biochemical mechanisms in 

these models will make use of ’omic analysis to inform 
experimental work.

Constraint-based modelling is already guiding 
discovery85 by identifying missing metabolic and 
regulatory functions84,86,94,115,116,136, predicting enzyme 
localization89, suggesting novel drug targets65,66,114, and 
aiding in strain design for chemical production67,77,137–141 
and biosensor development142. These studies are now 
increasingly directing experimental work. As models 
expand and are used to integrate ’omic data, COBRA 
methods will increasingly be deployed to guide scientific  
inquiry.
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