
BIOINFORMATICS Vol. 20 no. 3 2004, pages 407–415
DOI: 10.1093/bioinformatics/btg427

Parallel Metropolis coupled Markov chain Monte
Carlo for Bayesian phylogenetic inference

Gautam Altekar1,∗, Sandhya Dwarkadas1, John P. Huelsenbeck2

and Fredrik Ronquist3

1Department of Computer Science, University of Rochester, 2Section of Ecology,
Behavior and Evolution, Division of Biological Sciences, University of California,
San Diego and 3Department of Systematic Zoology, Evolutionary Biology Centre,
Uppsala University

Received on August 29, 2002; revised on April 3, 2003; accepted on April 17, 2003

Advance Access Publication January 22, 2004

ABSTRACT
Motivation: Bayesian estimation of phylogeny is based on
the posterior probability distribution of trees. Currently, the only
numerical method that can effectively approximate posterior
probabilities of trees is Markov chain Monte Carlo (MCMC).
Standard implementations of MCMC can be prone to entrap-
ment in local optima. Metropolis coupled MCMC [(MC)3], a
variant of MCMC, allows multiple peaks in the landscape of
trees to be more readily explored, but at the cost of increased
execution time.
Results: This paper presents a parallel algorithm for (MC)3.
The proposed parallel algorithm retains the ability to explore
multiple peaks in the posterior distribution of trees while
maintaining a fast execution time. The algorithm has been
implemented using two popular parallel programming models:
message passing and shared memory. Performance results
indicate nearly linear speed improvement in both programming
models for small and large data sets.
Availability: MrBayes v3.0 is available at http://morphbank.ebc.
uu.se/mrbayes/
Contact: galtekar@cs.rochester.edu

INTRODUCTION
Bayesian inference is a recently described method for estim-
ating phylogenetic trees (Li, 1996; Mau, 1996; Mau and
Newton, 1997; Mau et al., 1999; Larget and Simon, 1999;
Newton et al., 1999; Rannala and Yang, 1996; Yang and
Rannala, 1997) that is based on the posterior probability dis-
tribution of the trees. The posterior probability of a tree is
the probability of the tree relating the species conditional on
the phylogenetic observations (such as an alignment of DNA
sequences) and is proportional to the likelihood times the prior
probability of that tree. In a Bayesian phylogenetic analysis,
all estimates of phylogeny are based on the posterior prob-
ability distribution of trees. For example, the tree with the

∗To whom correspondence should be addressed.

maximum posterior probability (MAP) might be chosen as
a point estimate of phylogeny (Rannala and Yang, 1996), a
95% credible set of trees might be constructed by ordering
trees from highest to lowest posterior probability and, starting
with the MAP tree, including trees in a set until the cumu-
lative probability is 0.95 (Felsenstein, 1968), or the posterior
probabilities of individual clades (subtrees) might be shown
on a majority rule consensus tree or on the MAP tree (Larget
and Simon, 1999).

A Bayesian analysis of phylogenetic trees requires the
evaluation of high-dimensional summations and integrals.
Minimally, the posterior probability of a phylogenetic tree
involves a summation over all possible trees. The number of
trees for even moderately-sized problems is very large; for
example there are about two million unrooted trees possible
for 10 species and over a mole (6.02 × 1023) of trees possible
for 22 species. Moreover, for each tree that is considered, the
likelihood involves a multidimensional integral over all pos-
sible combinations of branch lengths and substitution model
parameters (e.g. parameters that allow different rates among
the different character states, different stationary character-
state frequencies, or rate variation across sites). By necessity,
then, posterior probabilities of trees must be approximated.
Markov chain Monte carlo (MCMC; Metropolis et al., 1953;
Hastings, 1970) has been successfully used to approximate the
posterior probability distribution of trees (Yang and Rannala,
1997; Larget and Simon, 1999; Huelsenbeck and Ronquist,
2001). MCMC uses stochastic simulation to obtain a sample
from the posterior distribution of trees; inferences are then
based on the MCMC sample.

The posterior probability distribution of trees can contain
multiple peaks. The peaks represent trees of high probability
separated from other peaks by valleys of trees with low prob-
ability. This is a phenomenon that has been observed for other
optimality criteria, such as maximum parsimony (Maddison,
1991) and maximum likelihood (see Salter and Pearl, 2001).
Like heuristic searches commonly used to find optimal trees,

Bioinformatics 20(3) © Oxford University Press 2004; all rights reserved. 407

 at Library D
ept of E

cology &
 S

ystem
 on F

ebruary 10, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://morphbank.ebc
http://bioinformatics.oxfordjournals.org/

G.Altekar et al.

MCMC can be prone to entrapment in local optima; a Markov
chain currently exploring a peak of high probability may
experience difficulty crossing valleys to explore other peaks.
A properly constructed Markov chain will eventually cross
even very deep valleys in the posterior probability distribution
of trees (Tierney, 1994). However, it may take a prohibitive
amount of time to adequately explore a rugged landscape of
trees. As a result, a large number of trees of high posterior
probability may go unexplored in a standard MCMC analysis.

A number of methods can be used to improve the mix-
ing (ability to explore the posterior distribution) of MCMC.
Metropolis coupled MCMC [or (MC)3] appears to be an
effective method for improving the mixing of MCMC (Geyer,
1991; Gilks and Roberts, 1996) and has been shown to
improve convergence by Huelsenbeck et al. (2001). (MC)3

involves running multiple chains, some of which are ‘heated’,
and attempting swaps of the states of chains. A heated
chain sees the landscape of trees as flattened relative to the
‘cold’ (or unheated) chain. Hence, heated chains can more
readily cross valleys in the landscape of trees. Occasion-
ally, the cold chain will successfully exchange states with
a heated chain that may be exploring another peak in the
landscape of trees. This allows the cold chain to effectively
jump a deep valley in a single step. Despite the improved
mixing of (MC)3, the use of multiple chains incurs a sig-
nificant performance cost. Specifically, MCMC requires the
execution of only one chain, but (MC)3 requires the execu-
tion of several chains. Since each iteration within a chain
involves the calculation of a potentially expensive likelihood
function, running several chains increases execution time
considerably.

The probability of a Markov chain moving to any particular
state in the next generation depends only upon the current state
of the chain. This Markov property makes significant parallel-
ization of MCMC algorithms difficult. The limited parallelism
of a single chain persists even when running multiple inde-
pendent chains, but the overhead of running the heated chains
can theoretically be nearly eliminated by running them in
parallel with the cold chain.

In this paper, we present a parallel (MC)3 [or p(MC)3]
algorithm that achieves near optimal speedups with both small
and large data sets. The p(MC)3 algorithm constitutes the
core of a parallel version of the program MrBayes (v3.0
Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck,
2003), a phylogenetic application that infers the evolutionary
history of a group of species using Bayesian inference. We
implement the p(MC)3 algorithm in two different program-
ming models: message passing and shared memory. Although
the underlying intuition of the algorithm is similar in both
models, differences in parallel programming constructs make
the two implementations somewhat different. We provide the
necessary details to implement each version of the algorithm.

Both implementations of our algorithm are evaluated on
a cluster of shared memory (symmetric) multiprocessors
(SMPs). The message passing implementation makes use

of the message passing interface (MPI) (MPIF, 1994) for
sending messages to and from processes. The shared memory
implementation uses Cashmere (Stets et al., 1997), a software
distributed shared memory (SDSM) system developed at the
University of Rochester, which provides the illusion of shared
memory in software across machines in the cluster. SDSM is
able to take advantage of hardware support (thereby provid-
ing better performance) for sharing within each SMP, while
allowing seamless expansion (without much loss in perform-
ance) across SMPs. Message passing has the advantage of
allowing applications to minimize overhead when commu-
nicating across SMPs by sending only the necessary data. In
the message passing implementation, we experiment with two
different network technologies: a standard Ethernet network
and the high speed Memory Channel network.

BACKGROUND
Bayesian estimation of phylogeny
The object of phylogenetic analysis is to estimate the phylo-
genetic history for a group of species. Phylogenies are
bifurcating trees, and are denoted τ1, τ2, τ3, . . . , τB(s), where
B(s) is the number of possible trees for s species [B(s) =
(2s−3)!/[2s−2(s−2)!] for rooted trees and B(s) = (2s−5)!/
[2s−3(s−3)!] for unrooted trees]. Each branch of the tree has a
length, which indicates the expected number of state changes
per character along that branch. The set of branch lengths for
the i-th tree is denoted vi . Character transformations along the
tree are described by a continuous-time Markov process, the
parameters of which are contained in a vector θ . Samples taken
from the Markov chain are valid, albeit dependent, samples
from the distribution of interest (Tierney, 1994).

In a Bayesian analysis, estimates are based upon the
posterior probability distribution of a parameter. For the
phylogeny problem, estimates are based on the joint posterior
probability distribution of ψ = (τ , v, θ), f (ψ |X), which is
calculated using Bayes’s formula as:

f (ψ |X) = f (X|ψ)f (ψ)

f (X)
.

The Metropolis–Hastings algorithm (Metropolis et al.,
1953; Hastings, 1970; Green, 1995), a variant of MCMC,
works as follows:

(1) Let ψ denote the current state of the Markov chain. If
this is the first iteration, ψ is initialized to some value,
perhaps a randomly chosen one.

(2) Randomly propose a new value for ψ , denoted ψ ′. The
probability of proposing the new state is q(ψ ′) whereas
the probability of proposing the old state conditional
on starting at the new state (a move that is not actually
made) is q(ψ).

(3) The probability, R, of accepting the new state is

R = min

[
1,

f (X|ψ ′)
f (X|ψ)

× f (ψ ′)
f (ψ)

× q(ψ)

q(ψ ′)

]
.

408

 at Library D
ept of E

cology &
 S

ystem
 on F

ebruary 10, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Parallel Metropolis coupled MCMC for Bayesian phylogenetic inference

(4) Generate a random variable, U , that is uniformly dis-
tributed on the interval (0, 1). If U is less than R, then
accept the proposed state and let ψ = ψ ′. Otherwise,
continue with the current state.

(5) Go back to step 2.

This process is repeated for a sufficiently large number of
iterations. As long as the chain is properly constructed [i.e. the
proposal mechanism(s) from step 2 result in an irreducible and
aperiodic Markov chain and there are no programming errors],
the long-run frequencies of states visited by the Markov chain
will approximate the posterior distribution.

Metropolis coupled MCMC
Metropolis coupled MCMC is a variant of MCMC in which
n chains are run (Geyer, 1991). Some of these chains are
‘heated’ by raising the posterior probability to a power β. For
example, if f (ψ |X) is the posterior probability density distri-
bution of the phylogenetic parameters, then a heated version
of the posterior distribution is f (ψ |X)β . Here, β (0 < β < 1)

is the heat value of the chain.
Heating a Markov chain increases the acceptance probabil-

ity of new states. Consider a Markov chain with state ψ and
a proposed state ψ ′. The probability of accepting ψ ′ for an
unheated or ‘cold’ chain is

R = min

[
1,

f (X|ψ ′)
f (X|ψ)

× f (ψ ′)
f (ψ)

× q(ψ)

q(ψ ′)

]
.

The probability of accepting ψ ′ for a heated chain, on the
other hand, is

R = min

[
1,

(
f (X|ψ ′)
f (X|ψ)

× f (ψ ′)
f (ψ)

)β

× q(ψ)

q(ψ ′)

]
.

If f (ψ |X) > f (ψ ′|X), raising each to the power β

increases R. Consequently, a heated chain tends to accept
more states than a cold chain, allowing a heated chain to more
readily cross valleys in the landscape of trees.

(MC)3 involves running n Markov chains where each chain
is labeled i ∈ (1, 2, . . . , n). We use incremental heating, where
the heat for the i-th chain is βi = 1/[1 + �T × (i − 1)], and
�T > 1 is a temperature increment parameter (Geyer, 1991).
The �T parameter is chosen such that swaps are accepted
between 20 and 60% of the time, thereby providing a sufficient
amount of mixing and justifying the use of (MC)3. Notice
that the heating parameter for the first chain is 1 (i.e. β1 = 1).
For this chain, acceptance probabilities are unaltered, thereby
making it the only cold chain.

Like MCMC, (MC)3 is an iterative algorithm, which works
as follows:

(1) Let ψ i denote the current state of Markov chain i. If
this is the first iteration, ψ i is initialized to some value,
perhaps a randomly chosen one. This is done for all
n chains.

(2) For all chains, i ∈ (1, 2, . . . , n)

(a) Randomly propose a new value for ψ i , called ψ ′
i .

(b) Accept or reject ψ ′
i with probability Ri ,

Ri = min

[
1,

(
f (X|ψ ′

i)

f (X|ψ i)
× f (ψ ′

i)

f (ψ i)

)βi

× q(ψ i)

q(ψ ′
i)

]
.

(c) Generate a random variable, U , that is uniformly
distributed on the interval (0, 1). If U is less than Ri ,
then accept the proposed state ψ i

′. Otherwise,
continue with the current state ψ i .

(3) After all chains have advanced a given number of itera-
tions (say one cycle), two randomly chosen chains j and
k are selected to exchange states. The swap of states is
accepted with probability

R = min

[
1,

f (ψk|X)βj f (ψj |X)βk

f (ψj |X)βj f (ψk|X)βk

]
.

(4) A uniformly distributed random number on the interval
(0, 1) is generated. If this number is less than the accept-
ance probability, then the proposed swap of states is
accepted and chains j and k exchange states.

(5) Go back to step 2.

After repeating this process for a sufficiently large number
of iterations, the long-run frequencies of states sampled by
the cold chain are a valid approximation of the posterior
distribution.

Successfully swapping states allows a chain that is other-
wise stuck on one peak in the landscape of trees to explore
other peaks. For example, if the cold chain is stuck on a peak
in the posterior distribution of trees, swapping states with
another (heated) chain allows the cold chain to jump to another
peak in a single cycle. As a result, the cold chain can more
easily traverse the space of trees.

The major disadvantage of (MC)3 is its execution time.
(MC)3 takes time proportional to the number of chains being
run. The number of heated chains needed for adequate mix-
ing in phylogenetic inference problems is likely to be data
dependent. We have found that running four coupled chains
results in successful convergence for several problems where
standard MCMC techniques fail (Huelsenbeck et al., 2001)
but it is quite possible that adequate mixing will require many
more heated chains for difficult data sets. When dealing with
large data sets, running even four chains may be computation-
ally prohibitive using traditional algorithms running on single
machines.

409

 at Library D
ept of E

cology &
 S

ystem
 on F

ebruary 10, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

G.Altekar et al.

PARALLEL (MC)3

In this paper, we introduce a p(MC)3 algorithm that signi-
ficantly decreases the execution time of a Bayesian analysis
using (MC)3. p(MC)3 works by running Markov chains in
parallel. Specifically, p(MC)3 spreads Markov chains among
processes. A process performs all computation associated with
its assigned chain(s). This includes calculating the likelihood
function, the most computationally intensive operation in any
given iteration.

In (MC)3, all chains proceed to the next iteration in step with
each other. Consequently, swaps are made between chains in
the same generation. p(MC)3 breaks away from the notion
of all chains proceeding in step with each other. For strict
correctness, however, swaps between chains must still take
place in the same generation. The exchange rule described
below guarantees sequential in-order execution of the swaps.

Exchange rule. Let ci,k be the i-th chain in generation
k where i ∈ (1, 2, . . . , n) and k ≥ 0. Chain ci,x can
exchange with chain cj ,y if and only if x = y.

In order to provide results that are identical in both sequential
and parallel implementations, p(MC)3 must strictly adhere to
the above exchange rule.

ALGORITHM
Heat swapping
p(MC)3 invokes communication among processes when a
chain exchanges state information with another chain. Since
chains may reside on different processes, communication
among chains leads to communication among processes. High
communication costs can severely degrade the performance
of any parallel algorithm.

When using p(MC)3 with phylogenies, state information
can be several megabytes in size. Tree data structures and
associated conditional likelihoods account for this large size.
Communicating such structures carries significant perform-
ance penalties. In both message passing and shared memory
implementations of (MC)3, communication time can exceed
computation time if large data structures are being exchanged.
Inexpensive communication operations are essential for effi-
cient parallelization of (MC)3.

p(MC)3 reduces communication costs by exchanging heats
rather than states. That is, chain states and their associated
data structures are never communicated. Rather, the heat val-
ues associated with each chain are swapped. Since the heat
value associated with each chain is unique to that chain, we
can effectively swap the identities of two chains by exchan-
ging the heat values. Once heats are swapped, the swapping
chains accept new states based on their newly acquired heat
values. Using the heat exchange mechanism, there is no need
to communicate the chain states and associated data structures,

resulting in interprocessor messages of a few bytes, rather than
messages several megabytes in size.

Both heat swapping and state swapping adhere to the
exchange rule. Heat swapping, however, provides a more
efficient way to effect swaps. Furthermore, heat swapping is
particularly easy to implement. A swapping chain can readily
access its partner’s heat value once both have synchronized
and communicated swap acceptance information with each
other. Once the swap is accepted, heat values can be swapped
without further communication.

State swapping code requires two rounds of communica-
tion once chains have synchronized. In the first round, swap
acceptance information is conveyed to the swap partner. In
the second round, the chain state is communicated if the
swap has been accepted. Heat swapping, on the other hand,
requires only one round of communication. In the first round,
swap acceptance information is conveyed to the swap part-
ner. If the swap is accepted, the current heat value is replaced
by the heat value received in the swap acceptance informa-
tion. By sending the random number used in making the swap
decision between the processors along with the rest of the swap
information, we can ensure that the processors make identical
swap acceptance decisions without having to communicate
additional information.

Synchronization
In p(MC)3, heat exchanges call for synchronization. The
exchange rule requires that chains synchronize with one
another before swapping heats.A swapping chain must receive
swap acceptance data from its swap partner before accepting
or rejecting a swap. The number of swaps, and thus the amount
of synchronization, affects our algorithm’s concurrency. We
present two exchange schemes that address synchronization
in p(MC)3 with varying degrees of efficiency and ease of
use. Both schemes adhere to the exchange rule and there-
fore provide results that are identical to the sequential version
in terms of phylogenetic data (provided that the number of
chains and random number seeds are identical).

Global exchange scheme In the global exchange scheme,
chains do not interact until an exchange must take place. After
all chains have completed a specified number of iterations,
two randomly selected chains, ci and cj , exchange states.

In this scheme, all chains must wait for ci and cj to complete
the exchange. A barrier operation (a barrier is a synchroniza-
tion operation that requires all processes to have entered it
before any process is allowed to continue) ensures that swaps
are complete before allowing any chain to continue. All chains
move collectively from iteration to iteration. The result is that
chains are guaranteed to be in the same iteration at the time
of a swap, thereby satisfying the exchange rule.

In the message passing version, the global exchange scheme
is easy to implement. A barrier operation is performed and

410

 at Library D
ept of E

cology &
 S

ystem
 on F

ebruary 10, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Parallel Metropolis coupled MCMC for Bayesian phylogenetic inference

acceptance information is then explicitly communicated via
send and receive operations. The following pseudo-code
demonstrates how the message passing version works.

For each generation
Propose a new state
Accept or reject the new state
Synchronize using a barrier
Send/receive swap acceptance info
If a swap is desirable

Swap heats

In a shared memory implementation of the global exchange
scheme, no explicit data communication is required. How-
ever, since all data structures are shared, care must be taken to
avoid over-writing data that is currently being read by another
process [write-after-read (WAR)—a race condition possible
when the same two chains swap in succession]. This is accom-
plished by using two sets ofn (wheren is the number of chains)
swap information holders. With every iteration, a sense vari-
able is reversed in order to alternate between the two sets.
The following pseudo-code demonstrates this process (i is
the executing chain and j is the chain chosen for swapping).

For each generation
Propose a new state
Accept or reject the new state
If sense == 0

SwapInfoReference
= sharedSwapInfo_1

else if sense == 1
SwapInfoReference

= sharedSwapInfo_2
SwapInfoReference[i] = mySwapInfo
Synchronize using a barrier
If swapping this iteration AND

SwapInfoReference[j] is desirable
Swap heats

Reverse sense

Although the barrier provides a quick and easy implementa-
tion, the high cost of communication that results from its
use can interfere with obtaining good speed improvements.
Communication costs can be especially expensive when using
high latency, low bandwidth interconnects.

The major disadvantage of this scheme, however, is that
using a barrier can lead to wasted processing time in non-
swapping chains due to uneven computation times in each
iteration of each chain (the computation time in each itera-
tion of each chain is in part conditional on the type of
move, which for MrBayes is randomly chosen). While chains
involved in the swap are required to wait to communicate
and exchange state acceptance information, uninvolved chains
must merely wait for the barrier to complete.

Point-to-point exchange scheme We now present a scheme
that minimizes idle time during state exchanges. The scheme
works by predetermining which two chains swap in each itera-
tion. Uninvolved chains are allowed to proceed to the next
iteration. As a result, little computation time is wasted waiting
for swaps to complete.

In this scheme, we exploit the fact that the selection of chains
(chain temperatures) for swap attempts in each generation
is independent of the swaps that have taken place previ-
ously. Thus, we can generate the sequence of swap attempts
before the run starts, either using true random numbers or a
pseudo-random number generator. Once a sufficiently long
sequence of swap attempts has been generated, the swap
attempt sequence is shared among all processes. At any given
generation, a chain can determine if it is involved in the swap
by checking the random number sequence. If a chain is not
involved in the swap, there is no need to wait for swapping to
complete. That is, the computation in the next generation for
a non-swapping chain is in no way dependent on the swap.
Therefore, chains that are not involved in the swap can begin
work on the next generation concurrently. Unlike a chain in
the global exchange scheme, a chain in this scheme is inde-
pendent until the time of a swap and can be several generations
ahead of the currently swapping chains.

Synchronization in this scheme is achieved through the use
of point-to-point synchronization operations. In the message
passing programming model, synchronization and data com-
munication are combined in the send and receive operations.
The following pseudo-code demonstrates how the message
passing version of the point-to-point exchange scheme works.

For each generation
Propose a new state
Accept or reject the new state
If swapping in this iteration

Send/receive swap acceptance info
If swap is desirable

Swap heats

When using the heat exchange method, a send operation is
used to send swap acceptance information to the swap partner.
This includes sending the likelihood and prior probability of
the current state as well the chain’s heat and swap decision
random number.

Point-to-point synchronization in the shared memory model
is accomplished through the use of flags. One complication,
however, is that swaps between various chains of different
generations may be in progress at the same time. In order
to avoid race conditions and deadlocks, we use two sets of
n2 flags and swap holders. Each flag uniquely identifies a
swapping pair. The two sets ensure that successive swaps
between the same chains do not overwrite data in swap hold-
ers before it has been read. We alternate between the two sets
with every swap of the same chains through the use of n sense

411

 at Library D
ept of E

cology &
 S

ystem
 on F

ebruary 10, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

G.Altekar et al.

variables (one per pair of processes). The following pseudo-
code shows how synchronization is maintained in the shared
memory version of the point-to-point exchange scheme.

If swapping in this iteration
If sense[j] == 0

SwapInfoReference
= sharedSwapInfo_1

flagReference = flagSet_1
else if sense[j] == 1

SwapInfoReference
= sharedSwapInfo_2

flagReference = flagSet_2
SwapInfoReference[i][j] = mySwapInfo
Release flagReference[i][j]
Acquire flagReference[j][i]
If SwapInfoReference[j][i] is

desirable Swap heats
Reverse sense[j]

If chains ci and cj are swapping, ci first releases flag [i, j] and
then acquires flag [j , i]. Chain cj performs a similar operation
by first releasing flag [j , i] and then acquiring flag [i, j].

Data exchange is accomplished through the use of n2 swap
holders, each holding swap acceptance information for swap-
ping chains. Before synchronizing, chains place swap data
into the corresponding holder. Once chains have synchron-
ized, a chain can readily access its partner’s swap data.

The advantage of the point-to-point exchange scheme is
that non-swapping chains no longer idle while a swap is
taking place. Moreover, the use of point-to-point synchron-
ization rather than barrier synchronization greatly reduces
communication cost and synchronization time.

SYSTEMS AND METHODS
We evaluate p(MC)3 on a cluster of 8 Compaq AlphaServer
4100 servers running Compaq Unix 4.0F with TruCluster v 1.6
extensions. Each AlphaServer is equipped with four 600 MHz
21164A processors and 2 GB of shared memory. The page size
in Compaq Unix is 8192 bytes.

All the servers are connected via an Ethernet and a high-
speed Memory Channel network. The Ethernet network
supports communication at 100 Megabit/s and is common
in most networked environments. The Memory Channel
(Gillett, 1996) is a PCI-based crossbar network that provides
higher bandwidth and lower latency communication than
Ethernet, with a peak point-to-point bandwidth of approx-
imately 83 MB/s and a one-way latency of 3.3 µs for a 64-bit
remote-write operation.

We evaluate two implementations of p(MC)3: a message
passing version and a shared memory version. In the mes-
sage passing version, we experiment with both Ethernet and

Memory Channel networks to determine the effects of net-
work bandwidth and latency on the algorithm. We use MPICH
1.2.4 (Gropp et al., 1996), a freely available implementation
of MPI that works with TCP/IP networks, on the Ethernet net-
work. We use Compaq MPI for evaluating our algorithm with
the high-speed Memory Channel network. Compaq MPI is a
high performance version of MPICH 1.1.1 specially designed
to take advantage of the Memory Channel interface.

The shared memory version was implemented using
Cashmere (Stets et al., 1997) on the Memory Channel.
Cashmere is a software distributed shared memory (DSM)
system for network multicomputers that provides the illusion
of shared memory across a distributed collection of machines.

The p(MC)3 algorithm and its sequential counterpart (MC)3

were implemented in C as part of the parallel version of
MrBayes 3.0. In order to compile both parallel and sequential
implementations of MrBayes, we used gcc version 2.8.1 with
the −03 flag for optimization.

In our experiments, we use two data sets. The first is a small
data set of nine replicase sequences from the bacteriophage
family Leviviridae (Bollback and Huelsenbeck, 2001). The
second is a large data set consisting of 140 ITS sequences of
the genus Astragalus, and related plant species (Sanderson
and Wojciechowski, 2000). Each data set is run under a gen-
eral time reversible model of DNA substitution (GTR; Tavaré,
1986). In the Leviviridae data set, the number of species in the
tree is small. The effect is that the cost of the likelihood func-
tion is low as well. An important result of small computation
cost is that the communication costs become correspondingly
more important. The Astragalus data set describes a phylo-
geny that contains many species, thereby resulting in a costly
likelihood function. Communication costs in the large data set
are less likely to interfere with speedup since the amount of
computation far exceeds communication.

We measure speedup using 1, 2, 4, 8, 16, 24 and 32 chains
on as many processors. In order to capture worst-case com-
munication costs, we require that a swap takes place at every
generation. In all our experiments, we run p(MC)3 for 20 000
generations.

RESULTS AND DISCUSSION
Figure 1 presents speedups obtained with both global and
point-to-point exchange schemes using shared memory. All
speedup figures are based on execution times of the sequential
version of MrBayes (Table 1A). Figure 2 shows speedups with
Compaq MPI using Memory Channel and with MPICH using
a 100 Megabit/s Ethernet network, both using the point-to-
point exchange scheme. All figures show speedups for runs of
the Leviviridae and Astragalus data sets.

The point-to-point exchange scheme achieves nearly linear
speedup for both MPI and Cashmere implementations. While
message passing has the advantage of allowing application
developers to ensure that only required data is communicated

412

 at Library D
ept of E

cology &
 S

ystem
 on F

ebruary 10, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Parallel Metropolis coupled MCMC for Bayesian phylogenetic inference

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
pe

ed
up

Processors

PPE Leviviridae
PPE Astragalus

GE Leviviridae
GE Astragalus

Fig. 1. Speedup of MrBayes using Cashmere and Memory Channel
network. Results for global (GE) and point-to-point (PPE) exchange
schemes are given.

Table 1. Speedup of MrBayes using Cashmere

Chains A B

Seq. GE PPE

1 18:103 0:0 0:0
2 37:201 9.4:25.3 9.2:24.3
4 74:389 14.1:42.6 9.4:33.3
8 150:871 24.9:56.9 14.1:31.6

16 305:1871 32.5:68.8 16.2:30.1
24 466:2790 35.8:72.9 18.0:28.5
32 622:3881 36.3:74.7 18.5:28.3

(A) Sequential execution times in seconds of MrBayes on a Compaq Alpha 4100.
(B) Percentage wait times at synchronization points for Cashmere using the global (GE)
and point-to-point (PPE) exchange schemes. Times for Leviviridae and Astragalus in
both sub-figures are separated by a colon in each cell.

across nodes (resulting in a 3% improvement in perform-
ance over Cashmere for Leviviridae), shared memory has the
advantage of more effectively utilizing the hardware support
for shared memory within each node [as evidenced by the
2 and 4% better performance of Cashmere at 4 processors
for the two data sets; performance differences are small since
p(MC)3 incurs low communication overhead]. Systems such
as Cashmere allow expansion of the use of shared memory
across nodes without much loss in performance.

On Cashmere, the point-to-point exchange scheme achieves
a three-fold performance increase over the global exchange
scheme. This is a result of low cost point-to-point synchron-
ization and high concurrency of computation and communic-
ation. Table 1B provides the percentage of total running time
that each processor on average spends waiting at synchron-
ization points for both point-to-point and global exchange

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
pe

ed
up

Processors

MPI Leviviridae
MPI Astragalus

MPICH Leviviridae
MPICH Astragalus

Fig. 2. Speedup of MrBayes using Compaq MPI and MPICH.
Results for the point-to-point exchange scheme are given.

schemes. Wait time in the point-to-point exchange scheme
with 32 processors and the Astragalus analyses is 28.3%. Wait
time in the global exchange scheme for the same configura-
tion, on the other hand, is 74.7%. The lower wait times of
the point-to-point exchange scheme are due in part to the fact
that only two processors synchronize no matter how many
processors there may be. The effect is that the amount of syn-
chronization is not a function of the number of processors.
The wait times also reflect the fact that non-swapping chains
can begin new computations while synchronization is taking
place. That is, more time is spent performing useful computa-
tion than waiting at synchronization points. As speedups for
the scheme indicate, low synchronization costs coupled with
overlapping communication and computation provides high
scalability.

Low synchronization costs and high concurrency, however,
do not fully account for the good speedups of the point-
to-point exchange scheme. Specifically, a 28.3% wait time
on 32 processors with Astragalus should actually result in
a speedup of 21× not 27×. The remaining performance
improvement can be attributed to caching effects. With our
data sets, each chain touches a minimum 1 MB of data when
performing the likelihood calculation. When running more
than eight chains on the sequential implementation of p(MC)3,
chains must compete with each other for the 8 M of on-board
cache. In the parallel implementation, however, no competi-
tion is necessary since we run only one chain per processor.
The result is that tree and conditional likelihood structures
of all chains stay in cache, thereby increasing the speed of
likelihood calculations significantly.

The high wait times of the global exchange scheme are
a result of two factors—the communication cost of barrier
synchronization and the computational imbalance among the
chains. The communication cost of barrier synchronization

413

 at Library D
ept of E

cology &
 S

ystem
 on F

ebruary 10, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

G.Altekar et al.

is proportional to the number of nodes. Most importantly,
however, the wait times reflect the imbalance in the com-
putation performed in each chain. In MrBayes, each chain
randomly selects a move (i.e. proposal mechanism) every
iteration. Since moves vary from chain to chain (e.g. some
chains select a computationally expensive move while others
select an inexpensive move), the time taken by each chain to
arrive at the barrier varies as well. The barrier prevents any
chain from continuing to the next iteration until all chains
have reported in. As a result, all chains must wait for the
slowest processor (i.e. the one that selected the most expens-
ive move), thereby wasting valuable computation time. The
amount of wasted computation time increases with the num-
ber of chains and data size (with larger data sizes, some moves
become more expensive). Consequently, the global exchange
scheme suffers from poor scalability.

As results from the MPI runs indicate, both Leviviridae
and Astragalus achieve good speedups when using either the
Ethernet or the Memory Channel network. The high perform-
ance of Leviviridae on the Ethernet network is particularly
remarkable since a small data set tends to generate a high num-
ber of messages per second. We believe that the exceptional
performance of the Ethernet implementation is a result of
two factors: the low-cost communication benefits of the heat
exchange method and the performance advantages afforded
by our experimental platform. The heat exchange method
reduces the amount of communication to a degree that the
algorithm is less dependent on the speed of the intercon-
nect. This can be seen in the speedup graphs where speedup
increases steadily even when communicating across nodes.
Another factor is that communication overhead on our Com-
paq Alpha is minimal when exchanging data between two
processors on the same node. Communication is costly only
when communicating across nodes. Since each node has four
processors, a swap may not always require making use of the
network.

With the point-to-point exchange scheme, the total amount
of data transmitted is independent of the size of the input
data set and the number of chains (recall that only two chains
communicate no matter how many chains there may be). For
our runs on MPI, a maximum of 1.28 MB may have to be
communicated with 20 000 generations of (MC)3, assuming
an attempted swap in each cycle.

In comparing results from the two data sets, we note that
the speedups for the two data sets are comparable, with
the Leviviridae analyses showing better speedups at small
numbers of processors. The Astragalus analyses’ higher com-
putation to communication ratio might suggest that it should
perform better. However, the Leviviridae analyses had smaller
waiting times (measured as a percentage of the total analysis
time) than the Astragalus analyses (Table 1B). The large com-
putation size of the Astragalus data increases the potential
worst case computational imbalance among chains, which
is the major contributor to the worst-case wait time. The

chain initiating a swap must wait for its partner to finish
its evaluation. Moreover, this penalty propagates to other
chains that depend on the swapping chain. This larger wait
time offsets the increased computation to communication
ratio for Astragalus. In Leviviridae, the imbalance or skew
in the computational load of each chain is smaller since the
size of computation is small. That is, a chain need not wait
for a long period of time even in the worst case. However,
as the speedup graphs demonstrate, the performance of the
Astragalus analyses scales better with larger numbers of pro-
cessors (results at 32 processors, the maximum number in our
experimental platform, show how the performance of the two
data sets begin to deviate, with the Astragalus data set con-
tinuing to show near linear performance improvement). The
degradation in performance for the smaller data set with the
increased number of chains is due to the increased waiting
times (cf. Table 1B). As the number of chains increases, the
number of swaps per chain decreases. As a result, the vari-
ance in the number of swap attempts among chains increases,
leading to longer wait times. The smaller data set is more sus-
ceptible to this effect because of the high communication to
computation ratio. For the larger data set, as the number of
swaps per chain decreases, the variation in computational bur-
den among processors decreases, leading to shorter waiting
times for this data set as the number of processors increases
(cf. Table 1B).

CONCLUSION
In this study, we have developed a new p(MC)3 algorithm.
The goals of the parallel algorithm are to attain a high level of
concurrency and to minimize communication costs. By tak-
ing advantage of the random nature of (MC)3, our algorithm
allows non-swapping chains to proceed to the next genera-
tion. The effect is that chains perform useful computation for
a majority of the execution. Moreover, our algorithm swaps
heats rather than states, thereby decreasing communication
overhead significantly.

The parallel algorithm has been implemented in both mes-
sage passing and shared memory programming models. The
performance of both implementations has been analyzed and
found to achieve near optimal speedup. By experimenting
with both Ethernet and the Memory Channel networks, we
have found that our algorithm scales well to a large number of
processors. High scalability opens up the possibility of run-
ning a large number of chains for better mixing. Finally, we
found that our algorithm performs equally well on both small
and large data sets. Thus, a parallel (MC)3 analysis need not
be limited to special data sets.

We are currently exploring load balancing techniques that
would result in idle chains being detected and put to useful
work, in addition to the parallelization of the likelihood cal-
culation itself. By making sure that all processors have work
to do throughout the computation, we hope to achieve better

414

 at Library D
ept of E

cology &
 S

ystem
 on F

ebruary 10, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Parallel Metropolis coupled MCMC for Bayesian phylogenetic inference

speed improvements and utilize larger numbers of processors
efficiently.

ACKNOWLEDGMENTS
We thank the University of Rochester Systems Group and
Umit Rencuzogullari for their helpful insights into parallel
(MC)3. S.D. was supported for this work in part by NSF
grants CCR-9702466, CCR-9988361, CCR-0219848, ECS-
0225413, and EIA-0080124; by the US Department of Energy
Office of Inertial Confinement Fusion under Cooperative
Agreement No. DE-FC03-92SF19460; and by an equipment
grant from Compaq. J.P.H. was supported by NSF grants
DEB-0075406 and MCB-0075404 and by a Guggenheim
Fellowship. F.R. was supported by Swedish Research Council
grant 621-2001-2963.

REFERENCES
Bollback,J.P. and Huelsenbeck,J.P. (2001) Phylogeny, genome evol-

ution, and host specificity of single-stranded RNA bacteriophage
(Family Leviviridae). J. Mol. Evolution, 52, 117–128.

Felsenstein,J. (1968) Statistical inference and the estimation of
phylogenies. Ph.D. dissertation, University of Chicago.

Geyer,C.J. (1991) Markov chain Monte Carlo maximum likelihood.
In Keramidas (ed.), Computing Science and Statistics: Proceed-
ings of the 23rd Symposium on the Interface. Interface Foundation,
Fairfax Station, pp. 156–163.

Gilks,W.R. and Roberts,G.O. (1996) Strategies for improving
MCMC. In Gilks,W.R., Richardson,S. and Spiegelhalter (eds)
Markov chain Monte Carlo in Practice. Chapman & Hall, London,
89–114.

Gillett,R. (1996) Memory channel: an optimized cluster intercon-
nect. IEEE Micro, 16, 12–18.

Green,P.J. (1995) Reversible jump Markov chain Monte Carlo com-
putation and Bayesian model determination. Biometrika, 82,
711–732.

Gropp,W., Lusk,E., Doss,N. and Skjellum,A. (1996) A high-
performance, portable implementation of the MPI message
passing interface standard. Technical Report ANL/MCS-TM-213,
Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, IL.

Hastings,W.K. (1970) Monte Carlo sampling methods using Markov
chains and their applications. Biometrika, 57, 97–109.

Huelsenbeck,J.P. and Ronquist,F. (2001) MrBayes: Bayesian infer-
ence of phylogenetic trees. Bioinformatics 17, 754–755.

Huelsenbeck,J.P., Ronquist,F., Nielsen,R. and Bollback,J.P. (2001)
Bayesian inference of phylogeny and its impact on evolutionary
biology. Science, 294, 2310–2314.

Larget,B. and Simon,D. (1999) Markov chain Monte Carlo
algorithms for the Bayesian analysis of phylogenetic trees. Mol.
Biol. Evolution, 16, 750–759.

Li,S. (1996) Phylogenetic tree construction using Markov chain
Monte carlo. Ph.D. dissertation, Ohio State University, Columbus.

Maddison,D.R. (1991) The discovery and importance of multiple
islands of most parsimonious trees. Syst. Zool., 40, 315–328.

Maddison,D.R., Swofford,D.L. and Maddison,W.P. (1997) NEXUS:
an extensible file format for systematic information. Syst. Biol.,
46, 590–621.

Mau,B. (1996) Bayesian phylogenetic inference via Markov chain
Monte carlo methods. Ph.D. dissertation, University of Wisconsin,
Madison.

Mau,B. and Newton,M. (1997) Phylogenetic inference for binary
data on dendrograms using Markov chain Monte Carlo. J. Comp.
Graph. Stat., 6, 122–131.

Mau,B., Newton,M. and Larget,B. (1999) Bayesian phylogenetic
inference via Markov chain Monte carlo methods. Biometrics,
55, 1–12.

Metropolis,N., Rosenbluth,A.W., Rosenbluth,M.N., Teller,A.H. and
Teller,E. (1953) Equations of state calculations by fast computing
machines. J. Chem. Phys., 21, 1087–1091.

MPIF (Message Passing Interface Forum). (1994) MPI: a Message-
Passing Interface standard. Int. J. Supercomput. Appl., 8, 157–416
(Special Issue).

Newton,M.A., Mau,B. and Larget,B. (1999) Markov chain Monte
Carlo for the Bayesian analysis of evolutionary trees from aligned
molecular sequences. In F. Seillier-Moseiwitch (ed.), Statistics in
Molecular Biology and Genetics. IMS Lecture Notes-Monograph
Series, 33, 143–162.

Rannala,B. and Yang,Z. (1996) Probability distribution of molecu-
lar evolutionary trees: a new method of phylogenetic inference.
J. Mol. Evolution, 43, 304–311.

Ronquist,F. and Huelsenbeck,J.P. (2003) Mr Bayes 3: Bayesian
phylogenetic inference under mixed models, Bioinformatics, 19,
1572–1574.

Salter,L.A. and Pearl,D.K. (2001) Stochastic search strategy for
estimation of maximum likelihood phylogenetic trees. Syst. Biol.,
50, 7–17.

Sanderson,M.J. and Wojciechowski,M.F. (2000) Improved boot-
strap confidence limits in large-scale phylogenies, with an
example from Neo-Astragalus (Leguminosae). Syst. Biol., 49,
671–685.

Stets,R., Dwarkadas,S., Hardavellas,N., Hunt,G., Kontothanassis,L.,
Parthasarathy,S. and Scott,M.L. (1997) Cashmere-2L: software
coherent shared memory on a clustered remote-write network.
Proceedings of the 16th ACM Symposium on Operating Systems
Principles, pp. 170–183.

Tierney,L. (1994) Markov chains for exploring posterior distributions
(with discussion). Ann. Stat., 22, 1701–1762.

Yang,Z. (1994) Estimating the pattern of nucleotide substitution.
J. Mol. Evolution, 39, 105–111.

Yang,Z. and Rannala,B. (1997) Bayesian phylogenetic inference
using DNA sequences: a Markov chain Monte carlo method. Mol.
Biol. Evolution, 14, 717–724.

415

 at Library D
ept of E

cology &
 S

ystem
 on F

ebruary 10, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

