TUTORIAL

- Learning basic operations in collecting data from sequence databases.
- Aligning the data so that the result is a resonable set forming material for other statistical analyses, such as clustering, phylogenetic trees
- Basic UPGMA-clustering with MEGA5-software.
- Time schedule:

Proceed so that you have data collection done when you come to the next computer class session Thursday 12. September when we align your data and learn the clustering step.

- Recommendation is that you don't work alone, form groups of 2-3 students.
- Assignment 1, which you are supposed to submit to pass the course, will be given Thursday 12. September. It will be basicly similar than this tutorial-example, but using different material (the p53 gene).
- Assignment 2, which you are also supposed to pass the course will be given Tuesday 17. September.
- Assignment submission deadline: Monday 23. September.

• The initial dataset in course webpage is a textfile in fasta-format from the gene brain-derived neurotrophic factor (BDNF) from 12 vertebrate animals (Vertebrates = the animal group which has bones, invertebrates are animals without skeleton, i.e. insects and crustaceans)

• There is one bird (Gallus, chicken) and 11 mammals (two primates: human and chimpanzee, three Artodactyla: pig, cow, horse, two rodents: mouse and rat, the rest being Carnivora). Birds (Aves) and mammals are two "sister-groups" in animal kingdom.

• Expand the dataset by collecting at least 15 additional animals.

• Some suggestions which contribute for making the data a bit more presentable throughout vertebrates and also highlight differences between animal "groups".

- Take more birds.
- Take also frogs (Amphibia)
- Take more primates (i.e. relatives of human and chimp)
- Take also the "almost-mammal-animals" = those that do not carry their baby inside, but outside their body (like kangaroo), i.e. Marsupiala.

• If you want to make a challenging alignment work, take fishes..... but then you need to do lots of alignment editing....

TUTORIAL - INSTRUCTIONS

Go to NCBI, <u>http://www.ncbi.nlm.nih.gov/</u>

technology Information		arch Clear
NCDI Users		
Site Map (A-7)	Welcome to NCBI	Popular Resources
All Resources	The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information.	BLAST Bookshelf
Data & Software	About the NCBI Mission Organization Research RSS Feeds	Gene Genome
DNA & RNA		 Nucleotide OMIM
Domains & Structures Genes & Expression Genetics & Medicine	Get Started Tools: Analyze data using NCBI software Downloads: Get NCBI data or software How-To's: Learn how to accomplish specific tasks at NCBI 	 Protein PubChem PubMed PubMed Central
Genomes & Maps	Submissions: Submit data to GenBank or other NCBI databases	SNP
Literature		NCBI News
Proteins	Genome	
Sequence Analysis		NCBI Discovery Workshop
Taxonomy	1000 prokaryotic genomes are	riactical Hands-Off Cours
	now completed and available in	

NAR's 2011 Database Issue is out with 9 NCBI-Authored Papers 05 Jan 2011 • Search "nucleotide" database because you are working with DNAsequences (more of the like you already have...)

• You do "BLASTing". If you want to learn more about these algorithms (topics in other MBIcourses, not in this course), read here, everything is explained, and look at the paper in course webpage.

TUTORIAL - STARTING BLAST

- Make sure that you know what is an accession number and fasta-format of a sequence.
- You have initial knowledge about the BDNF-sequences.
 - You can proceed by copy-pasting one sequence into BLAST-window (see next page), **or**
 - you can write to "search"-window (previous page) BDNF, you'll get a long list of results, try by restricting the search BDNF primates, or BDNF aves etc.

Basic BLAST

Choose a BLAST program to run.

nucleotide blast	Search a nucleotide database using a nucleotide query Algorithms: blastn, megablast, discontiguous megablast
<u>protein blast</u>	Search protein database using a protein query Algorithms: blastp, psi-blast, phi-blast
<u>blastx</u>	Search protein database using a translated nucleotide query
<u>tblastn</u>	Search translated nucleotide database using a protein query
<u>tblastx</u>	Search translated nucleotide database using a translated nucleotide query

• When you proceed by using a sequence that you already have in the initial file, and you have clicked "BLAST" from the previous page, you are now here and you continue by "nucleotide blast" to the next page.....

blastn <u>blastp</u> b	lastx		
tblastn tblastx Enter Query	Sequence BLASTN progra	ams search nucleotide databases using a nucleotic	•now you are here
Enter accession	number(s), gi(s), or FASTA sequence(s) 😡	Clear Query subrange 🚱	options)
Copy-pas more bird	ste here one sequence. (If you want s, type here the the chicken sequence.)	From To	 When you enter this page, the default is that you are interested in
Or, upload file Job Title	Browse_ Enter a descriptive title for your BLAST search more sequences		"Human genomic + transcript" but that is no true: remember to click "others"
Choose Sea	irch Set		 When you want to get
Database	 ○ Human genomic + transcript ○ Mouse genomic + transcript ◆ Nucleotide collection (nr/nt) 	anscript Others (nr etc.): Others (nr etc.): 	results from a restricted source, you type here
Organism Optional	Enter organism common name, binomial, or tax id. Only 20	top taxa will be shown.	aves or amphibia or marsupiala, etc.
Exclude Optional Entrez Query Optional	Models (XM/XP) Uncultured/environmental sample	sequences	
	Enter an Entrez query to limit search 🥪		

TUTORIAL - some remarks on data collection

• Collect the sequencies so that they are of comparable lengths already before alignments (which is then fine-tuning of gaps).

• A result might be like this:

- Query 1
 ATGACCATCCTTTTCCTTACTATGGTTATTTCATACTTTGGTTGCATGAAGGCTGCCCCC 60

 Sbjct 247
 ATGACCATCCTTTTCCTTACTATGGTTATTTCATACTTTGGTTGCATGAAGGCTGCCCCC 306

 (only the first and last row of a result query are shown).

 Query 721
 TTGACCATTAAAAGGGGAAGATAG 744

 Sbjct 967
 TTGACCATTAAAAGGGGAAGATAG 990
- "Query" is your sequence and you are interested only on this part.

• "Sbjct", a given sequence item (with a given accession number, its identifier from which you get it), has the relevant part beginning from its nucleotide 247 and spanning to its 990. Take only this part (see next page).

• You can delete the extra parts (here the 246 first nucleotides, and something after 990) after aligning you whole set. **HOWEVER**, it is advisable to do this kind operations before alignments => less "thinking" for the alignment program.

TUTORIAL - some remarks on data collection

Nucleotide Alphabet of Life	Search: Nucleotide Limits Advanced search Help Search Clear			
<u>Display Settings:</u> 🕑 GenBank		Send: 🖓	Change region shown	
Homo sapiens br NCBI Reference Sequence: NI	ain-derived neurotrophic factor (BDNF), transcript variant 12, mRNA		Customize view	•
FASTA Graphics			Analyze this sequence	
	 You have now clicked from one result (from its accession number) and have this page including one sequence for your data collection. You need it in FASTA- format and get that from here, but you don't want to take the the whole sequence behind this accession number and thus you use th and type the region you want (for example 	is 247-99	90).	

• The default in computer class C128 is that you use the installed programs ClustalX for alignments

• Course webpage has an example of an aligned FASTA-file and you should do that for the expanded dataset.

• Your FASTA-file here

• Your data in Clustal, before alignment, looks like this...

	**	***	* *	*	***	***	*	*	**	**	***	*	**	**	*		*															
Gallus_chi	GAA	AG	ст	AA <mark>C</mark>	rgg(ccc	AAT	r <mark>GC</mark> 1	GGT	тс <mark>а</mark>	AGA	GGA	СTG	AC A	TCA	<mark>СТ</mark> G	GCG	G <mark>AC</mark>	ACT1	r T T G	AA	ACG	TG <mark>A</mark>	<mark>r</mark> ag	AGG	AGC	TTC	T <mark>A</mark> G	A <mark>T</mark> G	AAG	ATC	AGC
Bos_taurus_ca	€G <mark>A</mark> G	AGC	AT	GAA	r <mark>ggg</mark>	CCC	AA	GG <mark>T</mark> C	GGGT	TC <mark>A</mark>	AGA	GGC	CTG	<mark>AC</mark> G	TCC	TCG	TC <mark>G</mark>	TCG	TT <mark>G</mark> (G <mark>C</mark> TG	AC 7	СТТ	TTG	AAC	<mark>A</mark> CG	TGA	TCO	<mark>AA</mark> G	AGC	TGT	TGG	ACC
Sus_scrofa	6 <mark>G</mark> AG	(<mark>AGC</mark>	GT	GAA	r <mark>ggg</mark>	CCC	AA	GG <mark>C</mark> 7	GGT	тс <mark>а</mark>	AGA	GGC	CTG	ACA	TCG	TCG	TCA	TCG	TCG1	r <mark>C</mark> GT	TGG	CGG	A <mark>C</mark> A	СТТ	TTG	AA <mark>C</mark>	ACO	TG <mark>A</mark>	TCG	AGG	AGC [®]	TGT
Ursus_arctos_	66 <mark>A</mark> G	; <mark>AG</mark> C	GT	GAA	r <mark>ggg</mark>	CCC	AAC	GG <mark>C</mark> 7	GGT	T <mark>C</mark> G	AGA	GGC	CTG	ACT	TCC	TTG	GCT	G <mark>AC</mark>	ACT1	r T T G	AAC	ACG	TG <mark>A</mark>	T <mark>A</mark> G	AA <mark>G</mark>	AG <mark>C</mark>	TGC	TGG:	<mark>AC</mark> G	AGG	ACC	AG7
elanoleuca_giant_p	€G <mark>A</mark> G	<mark>AG</mark> C	GT	GAA	r <mark>ggg</mark>	CCC	AA 0	GG <mark>C</mark> 7	GGC	TCG	AGA	GGC	CTG	ACT	TCC	TTG	G <mark>C</mark> T	GA <mark>C</mark>	ACT1	r T T G	AAC	ACG	TG <mark>A</mark>	T <mark>A</mark> G	AAG	AG <mark>C</mark>	TGT	"TGG	<mark>AC</mark> G	AGG	ACC	AG7
Felis_catus	66 <mark>A</mark> G	AG <mark>C</mark>	GT	GAA	GGG	CCC	AA	GG <mark>C</mark> 7	GGG	TCG	AGA	CGC	CTG	A <mark>C</mark> A	TCC	TTG	GCT	GA <mark>C</mark>	ACT1	r T T G	AAC	ACG	TG <mark>A</mark>	T A G	AAG	AGC	TGT	TGG	<mark>AC</mark> G	AGG	ACC	AG7
Equus_caballus_h	66 <mark>A</mark> G	<mark>AG</mark> C	GT	GAA	CGGG	CCC	AA	GG <mark>C</mark> 7	GGC	TCG	AGA	GGC	CTG	ACC	TCG	TTG	GCT	GA <mark>C</mark>	ACT1	rt <mark>c</mark> g	AAC	ACG	TG <mark>A</mark>	T A G	AAG	ACC	TGT	TGG	<mark>AT</mark> G	AGG	GCC	AG7
Canis_lupus_	66 <mark>A</mark> G	AG <mark>C</mark>	GT	GAG	r <mark>ggg</mark>	CCC	AA 0	G <mark>C</mark> C	GGGT	TCC	AGA	GGC	CTG	A <mark>C</mark> G	TCG	TTG	GCC	GA <mark>C</mark>	ACT1	r t t <mark>G</mark>	AA	ACG	TG <mark>A</mark>	T <mark>A</mark> G	AAG	AG <mark>C</mark>	TGT	TGG	<mark>AC</mark> G	AGG	ACC	AG7
Homo_sapiens_h	G<mark>A</mark>G	, <mark>AGC</mark>	GT	GAA	r <mark>ggg</mark>	CCC	AA	GG <mark>C</mark> 7	GGT	тс <mark>а</mark>	AGA	GGC	TTG	A <mark>C</mark> A	TCA	TTG	GCT	GA <mark>C</mark>	ACT1	rt <mark>c</mark> g	AAC	ACG	TG <mark>A</mark>	T <mark>A</mark> G	AAG	AG <mark>C</mark>	TGT	TGG	<mark>AT</mark> G	AGG	ACC	AG7
troglodytes_chimpa	G<mark>A</mark>G	AGC	GT	GAA	r <mark>ggg</mark>	CCC	AAC	GG <mark>C</mark> 7	GGT	тс <mark>а</mark>	AGA	GGC	TTG	A <mark>C</mark> A	TCG	TTG	GCT	G <mark>A</mark> C	ACT1	rtc <mark>g</mark>	AA	ACG	TG <mark>A</mark>	TAG	AAG	AGC	TG	TGG	ATG	AGG	ACC	AG7
Rattus_norvegicus	66 <mark>A</mark> G	AGC	GT	GAA	r <mark>ggg</mark>	CCC	AGO	GG <mark>C</mark> 7	GGT	TCG	AGA	GGT	CTG	<mark>A</mark> CG	<mark>A</mark> CG	A <mark>C</mark> G	TCC	CTG	G <mark>CT</mark> (GA <mark>C</mark> A	СТТ	TTG	AG <mark>C</mark>	A <mark>C</mark> G	TGA	TCG	AA	<mark>AGC</mark>	TGC	TGG	A <mark>T</mark> G	AGC
Mus musculus m	GAG	AGC	GT	GAA	rGGG	CCC	AGO	GG <mark>C</mark> 7	GGT	TCG	AGA	GGT	CTG	ACG	ACG	ACA	TCA	CTG	GCT	GACA	СТТ	TTG	ATC	ACG	TCA	TCG	AAC	AGC	TGC	TGG	ATG	AGC

• ... and after alignment

	** *** * * ******	* * ** ** *** * ****	** ****	******* ** ***** ** ** ** **
Gallus_chicken	IGAAAGCCTAACTGGGCCCA	AA <mark>TGCT</mark> GGTTCAAGAGG <mark>ACT</mark> GAC-	<mark>ATC</mark> ACTGGC	GGACACTTTTGAACACGTGATAGAGGAGCT
Bos_taurus_cattle	;GAGAG <mark>CAT</mark> GAA <mark>T</mark> GGG <mark>CCC</mark> A	AAGG <mark>T</mark> GGG <mark>TTC</mark> AAGAGG <mark>CCT</mark> GA <mark>C</mark> -	<mark>GTCC</mark> TCGTCGTCGTTGGC	TGACACTTTTGAACACGTGATCGAAGAGCT
Sus_scrofa_pig	GAGAGCGTGAATGGGCCCA	AAGG <mark>C</mark> AGG <mark>TTC</mark> AAGAGG <mark>CCT</mark> GA <mark>C</mark> A	TCGTCGTCATCGTCGTCGTTGGC	GGACACTTTTGAACACGTGATCGAGGAGCT
Ursus_arctos_bear	GAGAGCGTGAATGGGCCCA	AAGG <mark>C</mark> AGG <mark>TTC</mark> GAGAGG <mark>CCT</mark> GA <mark>C</mark> -	<mark>TTCC</mark> TT <mark>GGC</mark>	TGACACTTTTGAACACGTGATAGAAGAGCT
leuca_giant_panda	GAGAGCGTGAATGGGCCCA	\AGG <mark>C</mark> AGG <mark>CTC</mark> GAGAGG <mark>CCT</mark> GA <mark>C</mark> -	<mark>TTCC</mark> TT <mark>GGC</mark>	TGACACTTTTGAACACGTGATAGAAGAGCT
Felis_catus_cat	GAGAGCGTGAACGGGCCCA	\AGG <mark>C</mark> AGGG <mark>TC</mark> GAGA <mark>CGCCT</mark> GAC-	<mark>ATCC</mark> TT <mark>GGC</mark>	TGACACTTTTGAACACGTGATAGAAGAGCT
us_caballus_horse	GAGAGCGTGAACGGGCCCA	\AGG <mark>C</mark> AGG <mark>CTC</mark> GAGAGG <mark>CCT</mark> GA <mark>C</mark> -	<mark>CTC</mark> GTTGGC	TGACACTTTCGAACACGTGATAGAAGACCT
Canis_lupus_wolf	;GAGAG <mark>C</mark> G <mark>T</mark> GAG <mark>T</mark> GGG <mark>CCC</mark> A	AAGG <mark>CGGGTTCC</mark> AGAGG <mark>CCT</mark> GAC-	<mark>GTC</mark> GTTGGC	CGACACTTTTGAACACGTGATAGAAGAGCT
lomo_sapiens_human	GAGAGCGTGAATGGGCCCA	AAGG <mark>C</mark> AGG <mark>TTC</mark> AAGAGG <mark>CTT</mark> GA <mark>C</mark> -	<mark>ATC</mark> ATTGGC	TGACACTTTCGAACACGTGATAGAAGAGCT
.odytes_chimpanzee	GAGAGCGTGAATGGGCCCA	AAGG <mark>C</mark> AGG <mark>TTC</mark> AAGAGG <mark>CTT</mark> GA <mark>C</mark> -	<mark>ATCGTT</mark> GGC	TGACACTTTCGAACACGTGATAGAAGAGCT
us_norvegicus_rat	;GAGAG <mark>C</mark> G <mark>T</mark> GAA <mark>T</mark> GGG <mark>CCC</mark> A	AGGG <mark>C</mark> AGG <mark>TTC</mark> GAGAGG <mark>TCT</mark> GA <mark>C</mark> G	<mark>ACG</mark> ACGTCCCTGGC	TGACACTTTTGAGCACGTGATCGAAGAGCT
lus musculus mouse	GAGAGCGTGAATGGGCCCA	AGGGCAGGTTCGAGAGGTCTGACG	ACGACATCACTGGC	TGACACTTTTGATCACGTCATCGAAGAGCT

Tutorial - Instructions for collecting data from sequence databases / Biometry and bioinformatics I / 2013 / SVarvio

TUTORIAL - ALIGNMENT

- Before clicking "do complete alignment" (from Alignment), do the following:
- Alignment -> Alignment parameters (depends on the case, set gaps..)
- Alignment -> Output format options:

ОК	
Output Files	
CLUSTAL format	NBRF/PIR format
GCG/MSF format	PHYLIP format
GDE format	NEXUS format
FASTA format	
GDE output case :	Lower 🔻
CLUSTALW sequence nur	mbers : Off 🛛 👻
Output order :	Aligned 👻

• you need also a FASTA-format = aligned FASTA -> MEGA-format

• An alignment given by a program is always just a suggestion and must be inspected manually = by own eyes and brains. Depending on the case, corrections are needed / not needed.

• When you get the alignment, you should start thinking whether everything is okay, taking into account that the sequences should be from a protein coding gene (=> for example, only 3 nucleotide (or multiplies of 3) gaps (deletions/insterions) are reasonable.