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genes in common. Now consider two siblings A and B. Every maternal gene that has
been transmitted to A has a 50% chance of also being inherited to B. Hence, A and B
share % of their maternal genes, on average, the same being valid for paternal genes.
Therefore, the average fraction of genes that are identical by descent is i; for two
siblings. This is just the fraction of genes shared by a parent and its offspring. Similar
considerations show that, on average, half siblings have % and first cousins have 8% of
their genes in common.

Now let us investigate a more elaborate model, namely that of a quantitative
character. Our aim is to develop some of the basic notions of quantitative genetics.

their genes to their offspring. Therefore, a parent and its offspring have 1 of their

3.1 AVERAGE EFFECTS AND GENETIC VARIANCE

Quantitative characters are traits that exhibit continuous or almost continuous vari-
ation, and can be measured on a metric scale. Typical quantitative characters are
weight, height, various morphological measurements, vield, or fitness. Usually such
traits are influenced by a large number of loci, often with small effects. It is generally
not useful to describe the population genetics of such characters by gene frequencies,
because they are difficult or impossible to measure. Instead, a phenotypical approach
and statistical methods are needed, and the description will be in terms of the dis-
tribution of the character. The most important quantities to describe a probability
distribution are its mean value, measuring the location. and its variance, measuring
the dispersion. Often, these quantities can be accurately estimated from data. In this
section, we consider the simplest case, in which a character is determined by a sin-
gle locus and environmental influences are disregarded. More realistic models will be
investigated later in this book.

We consider a diploid population that is not necessarily in Hardy-Weinberg equi-
librium, and denote by P;;(= Pj;) the frequency of the ordered genotype A;.A ; and by
p; the frequency of allele 4; (2.4). Let G'i; be the genotypic value (the measurement)
of A; A; individuals. Then the mean genotypic value (the population mean) is

G=3 GiP;. (3.1)
iJ

The deviation of ;; from the mean is denoted by
9ij =G —G . (3.2)

and is called the average excess of the genotype AiA;. The genotypic variance. or
(total) genetic variance, is defined as

ol = gl (3.3)
i
Although, genotypic values and the total genetic variance are fundamental and mea-
surable quantities. they do not necessarily reflect the ‘evolutionary potential’ of a
population. The reason is that parents pass on their genes to the next generation, but
not their genotvpic values.
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Ezxzample 1. As an illustration, consider a population in Hardy-Weinberg proportions
with two alleles 4; and A, at frequencies p and 1 — p, re@pectivclv Then the three
possible genotypes have frequencies p*, 2p(1—p), and (1—p)*. Let us assume complete
dominance, i.e., the genotypic values of the genotypes are Gy # Gio = Ga, and
consider two individuals, one with genotype A4;.A4», the other AsA,. Hence, they
have identical genotypic values, G2 = Ga2. Suppose that each of these individuals
is mated randomly with a number of other individuals. What will be the expected
genotypic value of each’s offspring? With the help of Table 2.1, and remembering that
the probabilities that a given individual mates randomly with an A;A4;, A1 A5, or
AsAs individual are p?, 2p(1 — p), or (1 — p)?, respectively, we calculate the expected
genotypic value, G, among the offspring of A; A> as follows:

Gl =p* (3G + $G12) + 2p(1 = P)(5G 11 + 5G1a + Ga2)

+(1=p)P (3G + 1Gn)

%pGU + (1 — %p)Ggg . (3.4&)

1l

The expected genotypic value among offspring of the A5 A4, individual, however, is
Gy = Gao (3.4b)

which differs from G, unless p = 0. Thus, the expected genetic measurement of an
offspring does not depend in a simple way on the genotypic value of its parent. o

Therefore, we wish to assign to each allele 4; a value ; that measures the average
contribution of 4; to the character and represents the ‘part’ of the genotypic value that
determines the “genetic potentiality of the individual” (Fisher 1958, p. 33). We adopt
a procedure based on a least-squares approximation devised by Fisher (1918, 1930,
1941). Although this seems arbitrary at the moment, it leads to a natural formulation
for the correlation between relatives, and paves the way for understanding the response
of quantitative traits to selection. Let us write

gij =%+ + Vi, (3.5)

where 7; is called the average effect of A; on the character and ¥;; is the dominance
deviation. The alleles A; and A; are said to act additively (on the given scale) if
v;; = 0. Otherwise, one speaks of dominance of effects. The least-squares procedure
suggested by Fisher requires the minimization of the dominance variance

2 42 2
o =Y 9Py = (g — % — 1) P; (3.6)
ij ij
with respect to the ;. The idea behind this is, of course, to approximate the genotypic

value G; as (]()@91’\ as po»sxbk) 1y a linear expression, G+ ¥i + . in the sense that
the expected value of the squared deviations 9%, ; 1s minimized. Differentiation of o}
with respect to ; leads to the conditions

Z Vi Py Z(gw ~ i~ )P =0 foreveryi. (3.7)

J
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From the definition (3.2) of g;;. (3.5), and (2.4). we obtain
0= Zgijpij = QZ”MH + Z Vi By .
ij i ij
Hence, (3.7) implies that the mean of the average offects ig
Z yipi = 0. (3.8)

i

The average excess g: of A; is defined by g;p; = > 7 9i 55 and, because of (3.5) and

(3.7), satisfies the relation

9P =Yipi + Y %Py . (3.9)

J

Therefore, the average effects, y;, can be found as the solution of the system of linear
equations given by (3.9). If all allele frequencies satisfy p; > 0, then the average
effects are uniquely determined subject to the condition (3.8); see Chapter 11.3.6.
It is important to note that average effect and average excess depend on the gene
frequencies and thus on the current genetic composition of the population. Therefore,
they may change from one generation to the next.

(3.8)

(3.10)

The part of the total genetic variance that can be accounted for by the average
effects of the alleles is called the additive genetic. or genic, variance. In view of (3.8).

it is defined as
5 .
oR =D (n+%)°Py . (3.11)
ij
With Hardy-Weinberg proportions. simple algebra verifies that this is equivalent to

the representation
= 22731},« . (3.12)
H

Finally., we obtain the following fundamental decomposition of the (total) genetic
variance

2 N PO TR
T = E (ri + 5 + D)= Py
ij

= Z(ﬂf/é + f/j}gf)jj + Zl}fjp,j + 22{"5";’ + ”})I)Q;R]
o i iJ

where the last sum in the middle line is zero because of (3.7). The dominance variance
of is tvpically much less than the additive genetic variance o3 and vanishes in the
absence of dominance.

A trivial, but important, consequence of the Hardy Weinberg Law is that under
random mating the genetic variance and itg components remain constant in the absence

of forces such as selection, mutation. or random genetic drift.
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Ezample 2. Let us illustrate the notions just introduced for the case of two alleles,
assuming Hardy-Weinberg proportions. Denote the frequency of A; by p and the
genotypic contributions of A; A, A A, and 4> Ay by Gy, G2, and G0, respectively.
Then the mean genotypic value becomes

G = Gas + 2(G12 — Gaa)p + 20p7 (3.14)

where ¥ = L(G), + G93) — G». From (3.10), the average effects of A; and A, are
calculated to be Y1 = —(1 = p)(Ga — G2 — 20p) and v = p(Gas — G — 20p),
respectively, and, from (3.5), the dominance deviations are ¥;, = 20(1 — D), Vyy =
=2Up(1 — p), and Vo3 = 20p*. Thus, the additive genetic variance works out to be

it

oa = 2p(1 — p)[%(ng —Gu)+9(1 - 21))]2
2p

(1=p)n — ). (3.15)

il

and the dominance variance reduces to
od = 4Pl - p)? . (3.16)

Under the assumption of random mating, 4, — - is known as the {average) effect of

allelic substitution. Returning to the example at the beginning of this subsection, but

assuming arbitrary dominance relations, the expected genotyplic value among offspring

of an A; A» individual with genotypic value Gy = G + Y1 + ¥ + VY12 is calculated to
be

Gl =G+ Ly +7) and G =G+ . (3.17a)

o

B [

Thus, the average offspring differs from the population mean by half the additive
effect of its parent, irrespective of dominance effects. Therefore, the average effects
may be considered to measure the genetic and evolutionary ‘essential’ properties of
a genotype. We shall see later in this book that it is, indeed, the additive genetic
variance that is the major determinant for the response of the mean genotypic value
to selection. The sum of the average effects of an individual is called its breeding
value. For instance, v, + 42 is the breeding value of A;.A>. Since this is twice the
expected deviation of its offspring mean genotypic value from the population mean,
it is a readily measurable quantity. For an arbitrary number of alleles, (3.17a) can be
generalized and becomes

Gy = Z(Gm +Gpr =G+ v +)) (3.17b)
k

If the population is not in Hardy- Weinberg proportions, then the relations (3.17)
becowe more complicated. For example, the second equation in (3.17a) has to be

sl 2

replaced by G, = G + 9 + Voo (P, — Py Pyy)/ Pia, as the reader is invited to prove.

3.2 CORRELATIONS BETWEEN RELATIVES

The appropriate measure for the expected resemblance between individuals with re-
spect to a given quantitative character is the correlation coefficient. Suppose for some




