Mathematical theory of population genetics

Exercises 9.

1. Calculate $\mathrm{E}[T]$, when
(a) (3 points) T is exponentially distributed continuous random variable with rate parameter λ (i.e. λ is the rate at which events occur).
(b) (3 points) T is geometrical distributed discrete random variable with parameter p (i.e. p is the probability of an event happening at times $t=1,2,3, \ldots)$.
2. (3 points) Check that in the Wright-Fisher model

$$
\begin{equation*}
G_{i, j}=\mathcal{O}\left(\frac{1}{N^{2}}\right) \quad \text { with } j<i-1 . \tag{1}
\end{equation*}
$$

That is, the expression $G_{i, j}$, with $j<i-1$, has all the terms of order $\frac{1}{N^{2}}$ or lower.
3. (8 points) Show that in the Moran model (as defined in the lecture notes) the probability that in one time-step a common ancestor event happens among the i sample lineages is

$$
\begin{equation*}
G_{i, i-1}=\left(1-\frac{1}{N}\right) \frac{i(i-1)}{N(N-1)}=\binom{i}{2} \frac{2}{N^{2}}, \tag{2}
\end{equation*}
$$

where N is the total population size, and $i \leq N$.
Hint: A common ancestor event in the Moran model is taken to be as (backward in time) when a parent and its offspring coexist after reproduction among the i lineages. It is helpful to first calculate the probability that offspring and parent coexist among the i lineages given that the individual chosen for reproduction and death is not the same (which is a necessary condition for the parent and offspring to coexist in the population). You can think of it as tossing i balls without replacement into N boxes.

