Mathematical theory of population genetics

Exercises 8.

- 1. (2 points) Show that in the Wright-Fisher model the variance of each Bernoulli trial (i.e. each reproduction event, where either A_1 or A_2 is passed on to the offspring) is p(1-p), where p is the probability of success (i.e. the frequency of A_1 alleles amongst parents).
- 2. (2 points) Show that in the Moran model the variance of the number of A_1 alleles in the next generation is 2p(1-p), where p denotes the frequency of A_1 in this generation (i.e. show that $\operatorname{Var}[K_1] = 2p(1-p)$, where $pN = K_0$).
- 3. Show that the expected heterozygosity $E[H_1]$ in the
 - (a) (4 points) Wright-Fisher model is $H_0(1-\frac{1}{N})$.
 - (b) (4 points) Moran model is $H_0(1-\frac{2}{N^2})$.
- 4. (4 points) Considering Wright-Fisher or Moran model, show that knowing the distribution of the initial state K_0 , then

$$\mathbf{E}[K_{t+1}] = \mathbf{E}[K_t] = \dots = \mathbf{E}[K_0]. \tag{1}$$