Mathematical theory of population genetics

Exercises 7.

- 1. (3 points) Show that with two loci, arbitrary number of alleles, random mating and with no evolutionary processes (no selection, mutation etc.), the allele frequencies are conserved.
- 2. (3 points) Show that $D = x_1x_4 x_2x_3 = D_{11} = -D_{12} = -D_{21} = D_{22}$ (see also the Lecture notes).
- 3. (4 points) Suppose that fitnesses of genotypes are determined additively from fitnesses at individual loci. Then the fitness matrix is

$$\begin{pmatrix} a_{11} + b_{11} & a_{11} + b_{12} & a_{11} + b_{22} \\ a_{12} + b_{11} & a_{12} + b_{12} & a_{12} + b_{22} \\ a_{22} + b_{11} & a_{22} + b_{12} & a_{22} + b_{22} \end{pmatrix}$$
(1)

where the fitness contributions of the one-locus genotypes are a_{ij} for A_iA_j and b_{ij} for B_iB_j , i, j = 1, 2. Show that the mean fitness of the population \overline{W} is independent of gamete frequencies x_i , i = 1, 2, 3, 4.