Mathematical theory of population genetics

Exercises 3.

1. The selection equation

$$
\begin{equation*}
p_{i}^{\prime}=p_{i} \frac{V_{i}}{\bar{V}}, \quad \text { for } i=1, \ldots, k, \tag{1}
\end{equation*}
$$

where $V_{i}=\sum_{j} V_{i j} p_{j}$ and $\bar{V}=\sum_{i, j} V_{i j} p_{i} p_{j}$ are as in the lecture notes, can also be derived by explicitly writing out the mating process (using for example a mating table, see lecture notes) and by assuming equal mating probability and expected number of offspring for all the mating pairs. Mating is assumed to happen after the phase of selection and hence the frequency of $A_{i} A_{j}$ during the mating season is $P_{i j}^{*}$ (see lecture notes).
Let us denote with $P_{k l}^{*} Q_{i j, k l}$ the probability that a female (male) $A_{i} A_{j}$ mates with a male (female) of type $A_{k} A_{l}$ (for example, $Q_{i j, k l}$ may denote the probability of mating given that individual of type $A_{i} A_{j}$ has encountered $A_{k} A_{l}$; however, in general, the interpretation of Q can be more complex, and it is only the multiplication $P^{*} Q$ which gives a probability). Further, let us denote with $F_{i j, k l}$ the expected number of offspring of a couple $A_{i} A_{j}, A_{k} A_{l}$ and denote with $R_{i j, k l \rightarrow m n}$ the (Mendelian) probability that parents $A_{i} A_{j}$ and $A_{k} A_{l}$ produce offspring of type $A_{m} A_{n}$. Then, for example, the expected number of offspring produced by a female $A_{i} A_{j}$ with a male $A_{k} A_{l}$ is simply $P_{k l}^{*} Q_{i j, k l} F_{i j, k l}$.
Also, note that $Q_{i j, k l}=Q_{i j, l k}$ (doesn't matter from which parent the allele is inherited, applies also to $\left.F_{i j, k l}\right)$, but in general $Q_{i j, k l} \neq Q_{k l, i j}$.
(a) (2 points) What is the expected number of offspring of type $A_{m} A_{n}$ produced by a female $A_{i} A_{j}$ with a male $A_{k} A_{l}$?
(b) (2 points) What is the total expected number of offspring produced by a female $A_{i} A_{j}$?
(c) (2 points) What is the total expected number of offspring of type $A_{m} A_{n}$ produced by a female $A_{i} A_{j}$?
(d) (4 points) What is the frequency of genotype $A_{m} A_{n}$ in the next generation? (Remember to normalize so that frequencies add up to 1 !)
Now, consider two alleles A_{1} and A_{2}.
(e) (2 points) Write out the genotype frequencies of the next generation, $P_{11}^{\prime}, 2 P_{12}^{\prime}, P_{22}^{\prime}$.
(f) (4 points) Suppose that all the encounters are equally likely to end up in mating and that all matings result in equal number of offspring, that is, suppose that $Q=Q_{i j, k l}$ and $F=F_{i j, k l}$ for all i, j, k, l. Show that the selection equation (1) is recovered.

