We did not had time to go trough this solution in the exercise session. Therefore, a solution is presented here. You can, of course, send e-mail for further questions (henri.sulku@...).

Exercise 5. Generalizing from the exercise 3/7, show that the Weyl group of A_{l} operates on the weights $\lambda \in \mathfrak{h}^{*}$ as permutations in S_{l+1}.

Hint: Define coordinates μ_{i} in \mathfrak{h} by setting $\mu_{i}(h)=$ the i:th diagonal element of $h \in \mathfrak{h}$; we take as \mathfrak{h} the diagonal matrices in A_{l}. Then $\mu_{1}+\ldots+\mu_{l+1}=0$. The simple roots α_{i} can be written as $\alpha_{i}=\mu_{i}-\mu_{i+1}$ with $i=1,2, \ldots, l$. Show that the Weyl group acts by permuting the coordinates μ_{i}.

Show also that the fundamental weights are $\lambda_{i}=\mu_{1}+\ldots+\mu_{i}$.
Solution 5. Begin by noting that similarly as in previous exercises (3/7) we had

$$
S_{3}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1}^{2}=\sigma_{2}^{2}=e, \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle,
$$

we can generate S_{l+1} as
$S_{l+1}=\left\langle\sigma_{1}, \ldots, \sigma_{l} \mid \sigma_{1}^{2}=\ldots=\sigma_{l}^{2}=e, \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, 1 \leq i \leq l \&\left[\sigma_{i}, \sigma_{j}\right]=0, i \neq j \pm 1\right\rangle$.
To decrease the level of absraction, you can consider σ_{i} as a transposition $(i, i+1)^{1}$.
Thus, we wish to prove that the generators of the Weyl group of $A_{l}\left(W\left(A_{l}\right)\right)$ satisfy the same relations. The Weyl group is, by definition, generated by reflections $\sigma_{\alpha_{i}}$ corresponging to simple roots $\alpha_{i}, i=1, \ldots, l$. Thus:
1.) $\sigma_{\alpha_{i}}^{2}=0$ for all $i=1, \ldots, n$. Well, this is quite evident and actually we proved this at the Exercise 3 of the $7^{\text {th }}$ problem set (the same calculations apply). Thus, everything is fine here.
2.) The rest of the relations. Using the fact that $\left(\mu_{i}, \mu_{j}\right)=\delta_{i j}$, we can calculate

$$
\begin{align*}
\sigma_{\alpha_{j}}\left(\mu_{k}\right) & =\mu_{k}-2 \frac{\left(\mu_{k}, \mu_{j}-\mu_{j+1}\right)}{\left(\mu_{j}-\mu_{j+1}, \mu_{j}-\mu_{j+1}\right)}\left(\mu_{j}-\mu_{j+1}\right) \\
& =\mu_{k}-\left(\delta_{k j}-\delta_{k, j+1}\right)\left(\mu_{j}-\mu_{j+1}\right) \tag{1}
\end{align*}
$$

From here we immediately notice that

$$
\sigma_{\alpha_{j}}\left(\mu_{k}\right)=\left\{\begin{array}{ll}
\mu_{k}, & k=j+1 \tag{2}\\
\mu_{k+1}, & k=j \\
\mu_{k}, & \text { otherwise }
\end{array} .\right.
$$

Thus, σ_{j} swaps the indices j and $j+1$. Additionally, by using 1 again, we obtain first

$$
\begin{aligned}
\sigma_{\alpha_{i}} \sigma_{\alpha_{j}}\left(\mu_{k}\right)= & \mu_{k}-\left(\delta_{k j}-\delta_{k, j+1}\right)\left(\mu_{j}-\mu_{j+1}\right) \\
& -\left(\delta_{k i}-\delta_{k, i+1}\right)\left(\mu_{i}-\mu_{i+1}\right) \\
& +\left(\delta_{k j}-\delta_{k, j+1}\right)\left(\delta_{j i}-\delta_{j, i+1}\right)\left(\mu_{i}-\mu_{i+1}\right) \\
& -\left(\delta_{k j}-\delta_{k, j+1}\right)\left(\delta_{j+1, i}-\delta_{j+1, i+1}\right)\left(\mu_{i}-\mu_{i+1}\right)
\end{aligned}
$$

In here it is also visible that $\sigma_{i}^{2}=\mathbf{1}$. Also, if $i \neq j \pm 1$ (and $i \neq j$), then

$$
\sigma_{\alpha_{i}} \sigma_{\alpha_{j}}\left(\mu_{k}\right)=\mu_{k}-\left(\delta_{k j}-\delta_{k, j+1}\right)\left(\mu_{j}-\mu_{j+1}\right)-\left(\delta_{k i}-\delta_{k, i+1}\right)\left(\mu_{i}-\mu_{i+1}\right)=\sigma_{\alpha_{j}} \sigma_{\alpha_{i}}\left(\mu_{k}\right)
$$

[^0]The latter equality follows from the fact that the intermediate expression doesn't change if we interchange i and j. Thus, non-adjacent reflections commute.

Finally, one checks that the third order relation holds. This was calculated at the last weeks (week 44) exercise session for A_{2} and the calculation is precisely ${ }^{2}$ the same: Fix μ_{k}, calculate $\sigma_{\alpha_{j}} \sigma_{\alpha_{i}} \sigma_{\alpha_{j}}\left(\mu_{k}\right)$, notice that the result doesn't change if we interchange the roles of i and j, deduce that the constraint is fulfilled.

Then we obtain an isomorphism ψ from $W\left(A_{l}\right)$ to S_{l+1} by setting $\psi\left(\sigma_{\alpha_{i}}\right)=\sigma_{i}$ for all i.

How about the fundamental weights? Let α_{i} be a simple root. Then it follows that,

$$
\begin{aligned}
& \left\langle\alpha_{i}-\sum_{j=1}^{l}\left\langle\alpha_{i}, \alpha_{j}\right\rangle \lambda^{j}, \alpha_{k}\right\rangle \\
= & \left\langle\alpha_{i}, \alpha_{k}\right\rangle-\sum_{j=1}^{l}\left\langle\alpha_{i}, \alpha_{j}\right\rangle\left\langle\lambda^{j}, \alpha_{k}\right\rangle \\
= & \left\langle\alpha_{i}, \alpha_{k}\right\rangle-\sum_{j=1}^{l}\left\langle\alpha_{i}, \alpha_{j}\right\rangle \delta_{j k} \\
= & \left\langle\alpha_{i}, \alpha_{k}\right\rangle-\left\langle\alpha_{i}, \alpha_{k}\right\rangle=0 \forall k \in\{1, \ldots, l\}
\end{aligned}
$$

Thus,

$$
\alpha_{i}=\sum_{j=1}^{l}\left\langle\alpha_{i}, \alpha_{j}\right\rangle \lambda^{j} .
$$

But notice that the coefficients are just elements of the Cartan matrix(!):

$$
\alpha_{i}=\sum_{j=1}^{l} M_{i j} \lambda^{j} \quad \text { i.e. } \quad \bar{\alpha}=M \bar{\lambda} \quad \text { i.e. } \quad \bar{\lambda}=M^{-1} \bar{\alpha} .
$$

[^1]Then just check what are the simple roots and the Cartan matrix of your algebra. In this case,

$$
\begin{aligned}
\left(\begin{array}{c}
\lambda^{1} \\
\lambda^{2} \\
\vdots \\
\lambda^{l-1} \\
\lambda^{l}
\end{array}\right) & =\left(\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \cdots & 0 \\
0 & -1 & 2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right)^{-1}\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{l-1} \\
\alpha_{l}
\end{array}\right) \\
& =\left(\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \cdots & 0 \\
0 & -1 & 2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right)\left(\begin{array}{c}
\mu_{1}-\mu_{2} \\
\mu_{2}-\mu_{3} \\
\vdots \\
\mu_{l-1}-\mu_{l} \\
\mu_{l}-\mu_{l+1}
\end{array}\right) \\
& =\left(\begin{array}{c}
\mu_{1} \\
\mu_{1}+\mu_{2} \\
\mu_{1}+\mu_{2}+\mu_{3} \\
\vdots \\
\mu_{1}+\ldots+\mu_{l}
\end{array}\right)
\end{aligned}
$$

If not clear, the elements of the Cartan matrix are 2 on diagonal, -1 next to it and 0 otherwise. These you get from the Dynkin diagram of A_{l}, which consists of single lines between subsequent vertices.

At the exercise session when the dimension of a given Young diagram was considered, I referred to a text of Marco Panero. The text can be found in the last year's course web page: http://theory.physics.helsinki.fi/~fymm3/Young_calculus.pdf.
By the way, if you are not familiar with the groupprops database http://groupprops. subwiki.org/wiki/Main_Page, perhaps you want to take look. At least it's good to know that such a database exists. There is a huge amount of information about finite groups: $S_{n}, C_{n}, A_{n}, \ldots$, general theory, representations, useful identities and formulas etc.. Unfortunately, infinite groups, the matrix groups in particular, are presented in a more concise manner.

[^0]: ${ }^{1} \sigma_{1} \mapsto(i, i+1)$ defines an isomorphism from our group S_{l+1} to the standard cycle presentation. The constraints in the definition just say that disjoint transpositions commute, squares of transpositions are identities and the intermediate condition tells how adjacent transpositions behave.

[^1]: ${ }^{2}$ For A_{2}, I calculated this using general j and i so those calculation are completely valid in this higher dimensional case as well.

