
Because this exercise is rather lengthy, we were not able to go trough it properly in the
exercise session. Therefore, a solution is presented here. You can, of course, send e-mail
for further questions (henri.sulku@...).

Exercise 3. On the bases of the previous exercise, we know the number of inequivalent
irreducible representations of Dn (the dihedral group). Find first all 1-dimensional rep-
resentations. It turns out that the rest of the irreps are 2-dimensional (Find them!).
Compare with the number of conjugacy classes in Dn! Check that the characters indeed
form an orthogonal set.

Solution 4. The dihedral group may be defined several ways1 but, as earlier, we use the
following construction:

Dn
·
= 〈r, σ|rn = σ2 = e, σrσ = r−1〉. (1)

Therefore, as a set Dn = {e, r, . . . , rn−1, σ, rσ, . . . , rn−1σ}. In the previous exercise, we
have already shown that the conjugacy classes are

n odd : {ri, rn−i}, i = 0, . . . ,
n− 1

2
and {σ, rσ, . . . , rn−1σ} (n+ 3

2
pcs)

n even : {ri, rn−i}, i = 0, . . . ,
n

2
; {σ, r2σ, . . . , rn−2σ} and {rσ, r3σ, rn−1σ} (n+ 6

2
pcs)

Let us then deduce the irreps, first for odd n:

Suppose D : Dn → Aut(C) is a 1-dimensional rep, that is, a homomorphism. Then the
following equations hold:

D(r)n = D(rn) = D(e) = idC (2)

D(σ)2 = D(σ2) = D(e) = idC (3)

D(σ)D(ri)D(σ) = D(σriσ) = D(r−i) = D(r)−i. (4)

Additionally, (2) results in

D(r) = exp

(
2πki

n

)
idC (5)

for some k = 0, 1, . . . , n− 1. (3) results in

D(σ) = (−1)lidC (6)

for l = 1, 2. We have still the last equations (4) which, using (6), is equivalent to

D(ri) = D(r)−i, (7)

that is,

exp

(
2πki

n

)
= exp

(
−2πki

n

)
,

which, in turn, is equivalent to
2k

n
∈ Z. (8)

Since k takes values 0, 1, . . . , n − 1, the only possibility is k = 0 (Since n is odd). Thus,
there are only two 1-dimensional representations Dkl ((k = 0, l = 1) and (k = 0, l = 2))
which take values as:

D01(r
iσl) = D01(r

i)D01(σ
l) = (−1)lidC (9)

D02(r
iσl) = D02(r

i)D02(σ
l) = (−1)2lidC = idC (10)

for all i = 0, . . . , n− 1 and l = 0, 1.

1For example, 〈a, b|a2 = b2 = e, (ab)n = e〉 defines the same group with different generators.
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Remark that these are “trivially” irreducible since they are 1-dimensional.
The rest of the irreps are 2-dimensional. We know one irrep, D1 (the natural rep of

dihedral group), already, which is the action on R2 by rotations and reflections:

D(r) =

(
cos
(
2πi
n

)
− sin

(
2πi
n

)
sin
(
2πi
n

)
cos
(
2πi
n

) )
=: R (11)

and

D(σ) =

(
−1 0
0 1

)
=: P (12)

Thus, we could try to construct a multiplicity of reps by defining Dk(r) = Rk,Dk(σ) = P
and Dk(r

jσ) = RkjP (compare to exercise 1 of this week’s problem set). This is the case,
indeed, and we find (n− 1)/2 2-dimensional irreps, since

Dk(r
irjσ) = Dk(r

i+jσ) = Rk(i+j)P = Dk(r
i)Dk(r

jσ) (13)

Dk(r
iσrj) = Dk(r

i−jσ) = Rk(i−j)P = RkiPRkj = Dk(r
iσ)Dk(r

j) (14)

Dk(r
iσrjσ) = Dk(r

i−j) = Rk(i−j) = RkiPR−kjP = Dk(r
iσ)Dk(r

jσ) (15)

Dk(r
irj) = D(ri+j) = Rk(i+j)Dk(r

i)Dk(r
j) (16)

holds for every i, j = 1, . . . , n (,i.e., Dk i homomorphism for every k). You may easily
compute the characters at r: χk(Dk(r)) = 2 cos(2πki/n). Thus, the reps must be inequiv-
alent since the characters of equiv. reps are equal at every d ∈ Dn. They are irreducible
by similar argument as in the ex. 4 of problem set 32. Thus, the number of irreps is

|{D01, D02, D1, . . . , D(n−1)/2}| =
n+ 3

2

which equals the number of conj. classes.

For even n, almost everything goes just like in the case of odd n. The only part which
differs is that now the condition (8) is satisfied with k = n/2 as well. Thus, there are four
1-dimensional reps Dkl. D01 and D02 are as earlier and there are the two new ones:

Dn/2,1(r
iσj) = (−1)i(−1)jidC = (−1)i+jidC (17)

Dn/2,2(r
iσj) = (−1)i(−1)2jidC = (−1)iidC. (18)

Again, the number of irreps, that is

|{D01, D02, Dn/2,1, Dn/2,2, D1, . . . , D(n−2)/2}| =
n+ 6

2
,

equals the number of conjugacy classes.

The rest of the exercise, that is checking that the characters are orthogonal, is rather
mechanical computation. Since the calculations D01 ⊥ D02, D01 ⊥ Dk and D02 ⊥ Dk are
exactly the same for odd n, the calculation is written only in case of even n.

χ01 ⊥ χ02:∑
d∈Dn

χ01(d)χ02(d) =
n∑
k=1

χ01(r
k)χ02(r

k) + χ01(r
kσ)χ02(r

kσ)︸ ︷︷ ︸
=−1

=
n∑
k=1

1 · 1 + 1 · (−1) = 0.

2The argument is basically just remark that linear subspaces of R2 are lines through the origin. These
are not invariant in rotations!



3

χ01 ⊥ χp (p arbitrary, but fixed):

∑
d∈Dn

χ01(d)χp(d) =
n∑
k=1

χ01(r
k)χp(r

k) + χ01(r
kσ)χp(r

kσ))︸ ︷︷ ︸
=0

=
n∑
k=1

1 · 2 cos(2πpki/n) = 2Re
n∑
k=1

1 · exp(2πpki/n)

= 2Re
1− exp(2πik)

1− exp(2πki/n)
= 2Re0 = 0

χ02 ⊥ χp (p arbitrary, but fixed):

∑
d∈Dn

χ02(d)χp(d) =
n∑
k=1

χ02(r
k)χp(r

k) + χ02(r
kσ)χp(r

kσ)︸ ︷︷ ︸
=0

=
n∑
k=1

1 · 2 cos(2πpki/n) = 0

χl ⊥ χp (l 6= p arbitrary, but fixed):

∑
d∈Dn

χl(d)χp(d) =
n∑
k=1

χl(r
k)χp(r

k) + χl(r
kσ)︸ ︷︷ ︸

=0

χp(r
kσ)︸ ︷︷ ︸

=0

=
n∑
k=1

4 cos(2πlki/n) cos(2πpki/n)

=
n∑
k=1

exp((π(k + l)i/n) + exp(2πp(k − l)i/n) + exp(2πp(l − k)i/n) + exp(−2πp(k + l)i/n) = 0

Using the same geometric series identity as earlier.

These hold for both even and odd n’s. Thus, we have proved the orthogonality for odd n’s.
For even n’s, there are still some scalar products we have to calculate:

χn/2,2 ⊥ χp (p arbitrary, but fixed):

∑
d∈Dn

χn/2,2(d)χp(d) =
n∑
k=1

χn/2,2(r
k)χp(r

k) + χn/2,2(r
kσ)χp(r

kσ)︸ ︷︷ ︸
=0

=
n∑
k=1

(−1)k · 2 cos(2πpki/n) = 2Re
n∑
k=1

(−1)k exp(2πpki/n)

= 2Re
1− exp(2πik)

1 + exp(2πki/n)
= 2Re0 = 0

χn/2,1 ⊥ χp (p arbitrary, but fixed):

∑
d∈Dn

χn/2,1(d)χp(d) =
n∑
k=1

χn/2,1(r
k)χp(r

k) + χn/2,1(r
kσ)χp(r

kσ)︸ ︷︷ ︸
=0

=
n∑
k=1

(−1)k · 2 cos(2πpki/n) = 2Re
n∑
k=1

(−1)k exp(2πpki/n)

= 2Re
1− exp(2πik)

1 + exp(2πki/n)
= 2Re0 = 0
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χn/2,1 ⊥ χ01: ∑
d∈Dn

χ01d)χn/2,1(d)

=

n/2∑
k=1

χ01(r
2k)χn/2,1(r

2k) + χ01(r
2kσ)χn/2,1(r

2kσ)︸ ︷︷ ︸
=−1

+ χ01(r
2k+1)χn/2,1(r

2k+1)︸ ︷︷ ︸
=−1

+χ01(r
2k+1σ)χn/2,1(r

2k+1σ)

= n/2− n/2− n/2 + n/2 = 0.

χn/2,1 ⊥ χ02: ∑
d∈Dn

χ02(d)χn/2,1(d)

=

n/2∑
k=1

χ02(r
2k)χn/2,1(r

2k) + χ02(r
2kσ)︸ ︷︷ ︸
−1

χn/2,1(r
2kσ)︸ ︷︷ ︸

=−1

+ χ02(r
2k+1)χn/2,1(r

2k+1)︸ ︷︷ ︸
=−1

+χ02(r
2k+1σ)︸ ︷︷ ︸

=−1

χn/2,1(r
2k+1σ)

= n/2 + n/2− n/2− n/2 = 0.

χn/2,2 ⊥ χ02: ∑
d∈Dn

χ02(d)χn/2,2(d)

=

n/2−1∑
k=0

χ02(r
2k)χn/2,2(r

2k) + χ02(r
2kσ)︸ ︷︷ ︸
−1

χn/2,2(r
2kσ)

+ χ02(r
2k+1)χn/2,2(r

2k+1)︸ ︷︷ ︸
=−1

+χ02(r
2k+1σ)︸ ︷︷ ︸

=−1

χn/2,2(r
2k+1σ)︸ ︷︷ ︸

=−1

= n/2− n/2− n/2 + n/2 = 0.

χn/2,2 ⊥ χ01: ∑
d∈Dn

χ01(d)χn/2,2(d)

=

n/2−1∑
k=0

χ01(r
2k)χn/2,2(r

2k) + χ01(r
2kσ)χn/2,2(r

2kσ)

+ χ01(r
2k+1)χn/2,2(r

2k+1)︸ ︷︷ ︸
=−1

+χ01(r
2k+1σ)χn/2,2(r

2k+1σ)︸ ︷︷ ︸
=−1

= n/2 + n/2− n/2− n/2 = 0.
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χn/2,2 ⊥ χn/2,1: ∑
d∈Dn

χn/2,1(d)χn/2,2(d)

=

n/2−1∑
k=0

χn/2,1(r
2k)χn/2,2(r

2k) + χn/2,1(r
2kσ)︸ ︷︷ ︸

=−1

χn/2,2(r
2kσ)

+ χn/2,1(r
2k+1)︸ ︷︷ ︸

=−1

χn/2,2(r
2k+1)︸ ︷︷ ︸

=−1

+χn/2,1(r
2k+1σ)χn/2,2(r

2k+1σ)︸ ︷︷ ︸
=−1

= n/2− n/2 + n/2− n/2 = 0.

We see, that the inner products of different chracartes are zero so these form an orthogonal
set. This finishes the solution — Hopefully there are no erros.


