We did not had time to go trough this solution in the exercise session. Therefore, a solution is presented here. You can, of course, send e-mail for further questions (henri.sulku@...).

Exercise 4. Let M be a pseudo-Riemannian manifold of signature (p, q). (p positive and q negative eigenvalues of the metric tensor.) Let ω be a differential form of degree k on M. Then $\star \star \omega= \pm \omega$. Compute the sign as a function of p, q and k.

Solution 4. Recall the definition of the Hodge star operator or the Hodge dual ${ }^{1}$:
$\star: \Omega^{k} \rightarrow \Omega^{n-k}$,

$$
\begin{equation*}
\star \omega=\star \omega_{i_{1} \ldots i_{k}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}=\frac{\left|\operatorname{det}\left(g_{i j}\right)\right|^{1 / 2}}{k!} \epsilon_{i_{1} \ldots i_{n-k}}^{j_{1} \ldots j_{k}} w_{j_{1} \ldots j_{k}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{n-k}} \tag{1}
\end{equation*}
$$

where $\epsilon_{i_{1} \ldots i_{n}}$ is completely antisymmetric tensor with $e_{1 \ldots n}=1$ (i.e. the n-dimensional Levi-Civita symbol). Remark also that there is an error in the lecture notes with the definition (there is $\left|\operatorname{det}\left(g_{i j}\right)\right|^{-1 / 2}$ there).
Using the definition, we obtain immediately that

$$
\begin{aligned}
\star \star \omega & =\frac{\left|\operatorname{det}\left(g_{i j}\right)\right|^{1 / 2}}{k!} \star \epsilon_{i_{1} \ldots i_{n-k}}{ }^{j_{1} \ldots j_{k}} w_{j_{1} \ldots j_{k}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{n-k}} \\
& =\frac{\left|\operatorname{det}\left(g_{i j}\right)\right|}{k!(n-k)!} \epsilon_{l_{1} \ldots l_{k}}^{i_{1} \ldots i_{n-k}} \epsilon_{i_{1} \ldots i_{n-k}}^{j_{1} \ldots j_{k}} w_{j_{1} \ldots j_{k}} d x^{l_{1}} \wedge \ldots \wedge d x^{l_{k}} \\
& =\frac{\left|\operatorname{det}\left(g_{i j}\right)\right|}{k!(n-k)!} g^{i_{1} m_{1}} \ldots g^{i_{n-k} m_{n-k}} \epsilon_{l_{1} \ldots l_{k} m_{1} \ldots m_{n-k}} g^{j_{1} n_{1}} \ldots g^{j_{k} n_{k}} \epsilon_{i_{1} \ldots i_{n-k} n_{1} \ldots n_{k}} w_{j_{1} \ldots j_{k}} d x^{l_{1}} \wedge \ldots \wedge d x^{l_{k}} .
\end{aligned}
$$

But remark that

$$
\begin{equation*}
g^{i_{1} m_{1}} \ldots g^{i_{n-k} m_{n-k}} g^{j_{1} n_{1}} \ldots g^{j_{k} n_{k}} \epsilon_{i_{1} \ldots i_{n-k} n_{1} \ldots n_{k}}=\operatorname{det}\left(g^{i j}\right) \epsilon_{m_{1} \ldots m_{n-k} j_{1} \ldots j_{k}} \tag{2}
\end{equation*}
$$

because of the general determinant formula:

$$
g^{1 k_{1}} \ldots g^{n k_{n}} \epsilon_{k_{1} \ldots k_{n}}=\operatorname{det}\left(g^{i j}\right)
$$

from which it follows that

$$
\begin{equation*}
g^{i_{1} k_{1}} \ldots g^{i_{n} k_{n}} \epsilon_{k_{1} \ldots k_{n}}=\operatorname{det}\left(g^{i j}\right) \epsilon_{i_{1} \ldots i_{n}} . \tag{3}
\end{equation*}
$$

Note that (2) and (3) are the very same equation but with different names for the indices. Additionally, $\operatorname{det}\left(g^{i j}\right)=\operatorname{det}\left(g_{i j}\right)^{-1}$. Thus, our formula for the square of Hodge star becomes

$$
\star \star \omega=\frac{\left|\operatorname{det}\left(g_{i j}\right)\right|}{\operatorname{det}\left(g_{i j}\right)} \frac{1}{k!(n-k)!} \sum_{l m j} \epsilon_{l_{1} \ldots l_{k} m_{1} \ldots m_{n-k}} \epsilon_{m_{1} \ldots m_{n-k} j_{1} \ldots j_{k}} w_{j_{1} \ldots j_{k}} d x^{l_{1}} \wedge \ldots \wedge d x^{l_{k}} .
$$

We can do the summation over m and l :

$$
\begin{aligned}
& \sum_{l m} \epsilon_{l_{1} \ldots l_{k} m_{1} \ldots m_{n-k}} \epsilon_{m_{1} \ldots m_{n-k} j_{1} \ldots j_{k}} d x^{l_{1}} \wedge \ldots \wedge d x^{l_{k}} \\
= & (-1)^{k(n-k)} \sum_{l m} \epsilon_{l_{1} \ldots l_{k} m_{1} \ldots m_{n-k}} \epsilon_{j_{1} \ldots j_{k} m_{1} \ldots m_{n-k}} d x^{l_{1}} \wedge \ldots \wedge d x^{l_{k}} \\
= & (-1)^{k(n-k)} k!(n-k)!d x^{j_{1}} \wedge \ldots \wedge d x^{j_{k}}
\end{aligned}
$$

[^0]where we used in the last line two facts: because m_{i} 's appear in two Levi-Civita symbols (which are both antisymmetric) the effects cancel and sum gives the $(n-k)$!-factor. Similarly, l_{i} 's appear in the Levi-Civita symbol and in the wedge-product (which are both antisymmetric) so the sum gives the $k!$-factor. In the first equation, the $(-1)^{k(n-k)}$ comes from the already familiar fact
\[

\operatorname{sign}\left($$
\begin{array}{cccccccc}
m_{1} & \ldots & \ldots & \ldots & m_{n-k} & j_{1} & \ldots & j_{k} \\
j_{1} & \ldots & j_{k} & m_{1} & \ldots & \ldots & \ldots & m_{n-k}
\end{array}
$$\right)=(-1)^{k(n-k)} .
\]

Thus, our expression becomes

$$
\begin{aligned}
\star \star \omega & =\frac{\left|\operatorname{det}\left(g_{i j}\right)\right|}{\operatorname{det}\left(g_{i j}\right)} \frac{1}{k!(n-k)!} w_{j_{1} \ldots j_{k}}(-1)^{k(n-k)} k!(n-k)!d x^{j_{1}} \wedge \ldots \wedge d x^{j_{k}} \\
& =\operatorname{sign}\left(\operatorname{det}\left(g_{i j}\right)\right)(-1)^{k(n-k)} \omega=(-1)^{q}(-1)^{k(n-k)} \omega=(-1)^{q+k(n-k)} \omega .
\end{aligned}
$$

Since this holds for arbitrary k-form, we deduce that

$$
\begin{equation*}
\star \star=(-1)^{q+k(n-k)} \mathbf{1} \tag{4}
\end{equation*}
$$

where $\mathbf{1}$ is the identity $\Omega^{k} \rightarrow \Omega^{k}$.

[^0]: ${ }^{1}$ In what follows, there is always sum over the index when it appears once up and once down. Additionally, the indices are raised and lowered using the metric tensor: $A_{i j}=g_{i m} g_{j n} A^{m n}$ and so on.

