To be returned on Wednesday, October 31, 10.15am at latest

1. Returning to the exercise $6 / 6$, derive the root diagram of B_{2} in the plane \mathbb{R}^{2} and its Cartan matrix and the Dynkin diagram.
2. Using the properties (1) - (4) of the root systems in the lecture notes, give a list of possible angles (in the range $0<\phi<\pi$) between root vectors and the ratios of lengths of different root vectors. (This will be a short list!)
3. Show that the Weyl group of A_{2} is isomorphic to the permutation group S_{3}.
4. Let Φ be a root system. Show that $\Phi^{\vee}=\left\{\alpha^{\vee} \mid \alpha \in \Phi\right\}$ is also a root system (i.e. this system satisfies the root axioms (1) - (4)), where $\alpha^{\vee}=2 \alpha /(\alpha, \alpha)$.
5. Let $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$ and $\mathfrak{h}, \mathfrak{h}^{\prime} \subset \mathfrak{g}$ a pair of Cartan subalgebras. Show that there is an automorphism $\phi: \mathfrak{g} \rightarrow \mathfrak{g}$ such that $\mathfrak{h}^{\prime}=\phi(\mathfrak{h})$. Hint: Since the Cartan subalgebra has to be 1-dimensional, it is spanned by a single vector $w=a x+b y+c h$ in the standard basis x, y, h. Show that $a b \neq-c^{2}$. Use also the fact from linear algebra: Any complex $n \times n$ matrix A can be brought to the Jordan normal form $N=g A g^{-1}$ by a basis change matrix g, that is, to a matrix N which is almost diagonal, the only possible nonzero elements outside of the diagonal are in the positions $N_{i, i+1}$ when $N_{i i}=N_{i+1, i+1}$ and are equal to 1 .
6. Show that the map $\alpha \mapsto-\alpha$ is an automorphism of a root system.
