To be returned on Wednesday, October 17, 10.15am at latest

1. Let \mathfrak{g} be the complex vector space \mathbb{C}^{3} equipped with the commutator defined as [$X, Y]=X \wedge Y$, where $Z=X \wedge Y$ is the vector cross product, in coordinate form $Z=\left(X_{2} Y_{3}-X_{3} Y_{2}, X_{3} Y_{1}-X_{1} Y_{3}, X_{1} Y_{2}-X_{2} Y_{1}\right)$. Show that this is a Lie algebra and in fact isomorphic to $\mathfrak{s l}(2, \mathbb{C})$.
2. Let $x=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), y=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), h=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ be the standard basis for $\mathfrak{s l}(2, \mathbb{C})$. Compute explicitly the adjoint representation of $\mathfrak{s l}(2, \mathbb{C})$ as 3×3 matrices and determine the Killing form in this basis.
3. Show that the Lie algebra $\mathbf{o}(3)$ (antisymmetric real 3×3 matrices) and the Lie algebra $\mathbf{s u}(2)$ are isomorphic.
4. Let \mathfrak{g} be a subalgebra of $\mathbf{g l}(n, \mathbb{C})$. Show that

$$
e^{a d_{x}}(y)=e^{x} y e^{-x}
$$

for all $x, y \in \mathfrak{g}$.
5. Let \mathfrak{g} be the Lie algebra of real antisymmetric $n \times n$ matrices. Show that the map $x \mapsto g x g^{-1}$ for any orthogonal matrix $g \in O(n)$ defines an automorphism of \mathfrak{g}. Is this automorphism an inner automorphism?
6. Let B_{2} be the Lie algebra of all complex antisymmetric 5×5 matrices. Choose $\mathfrak{h} \subset$ B_{2} as the commutative 2-dimensional algebra spanned by the matrices $h_{1}=e_{12}-e_{21}$ and $h_{2}=e_{34}-e_{43}$ where the $e_{i j}$'s are the elementary matrices $\left(e_{i j}\right)_{k l}=\delta_{i k} \delta_{j l}$. Show that this is a Cartan subalgebra by finding the root vectors $x_{\alpha} \in B_{2}$ with [$\left.h_{i}, x_{\alpha}\right]=\alpha\left(h_{i}\right) x_{\alpha}$. Hint: Define first the generators $L_{i j}=e_{i j}-e_{j i}$ of B_{2} and then try to define each x_{α} as a suitable linear combination of the $L_{i j}$'s.

