To be returned on Wednesday, December 12, 10.15am at latest

1. Using the coordinate transformation formula for the components $g_{i j}(x)$ of the metric tensor show that the components $\Gamma_{i j}^{k}(x)$ of the Levi-Civita connection transform in a correct way.
2. Assume that on a 3-dimensional Riemannian manifold we have an orthonormal basis $\left\{L_{1}, L_{2}, L_{3}\right\}$ of vector fields such that $\left[L_{i}, L_{j}\right]=\epsilon_{i j k} L_{k}$. Determine the LeviCivita connection (Christoffel symbols in this basis) and its Riemann curvature tensor. Hint: The Levi-Civita connection is the unique torsion free metric compatible connection. Use the symmetry properties of the Christoffel symbols coming from these properties. Compare with the exercise $2 / 12$!
3. Let $f(x)=\operatorname{det}\left(g_{i j}(x)\right.$, the determinant of the metric tensor. Show directly from the definition of the Levi-Civita connection that $\Gamma_{i j}^{i}=\frac{1}{2} f^{-1} \partial_{j} f$ (sum over repeated index).
4. Let M be the hyperboloid $t^{2}-x^{2}-y^{2}=-1$ in \mathbb{R}^{3}. We define a pseudoRiemannian metric on M as the restriction of the Minkowski metric $d s^{2}=d t^{2}-$ $d x^{2}-d y^{2}$ to the surface M. a) Show that the metric has signature +- (one time-like and one space-like direction). b) Write explicitly the geodesic equations in terms of the cylindrical coordinates (t, ϕ) with $x=r \cos \phi, y=r \sin \phi$. Compute the geodesic distance between the (t, x, y) points $(0,1,0)$ and $(1, \sqrt{2}, 0)$.
5. Prove the first Bianchi identity

$$
R_{i j k}^{m}+R_{j k i}^{m}+R_{k i j}^{m}=0
$$

when the torsion tensor $T=0$.

