To be returned on Wednesday, November 28, 10.15am at latest

1. Let $M=\mathbb{R}^{2} \backslash\{0\}$ and $\omega=\frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$. Show that ω is closed. Define $f(x, y)=\operatorname{arc} \tan (y / x)$. Compute $d f$. Is ω exact?
2. Prove the relation $F_{k}^{i} \circ F_{k-1}^{j}=F_{k}^{j} \circ F_{k-1}^{i-1}$ for the face maps when $j<i$.
3. Let $\omega=b^{1} d x^{2} \wedge d x^{3}+b^{2} d x^{3} \wedge d x^{1}+b^{3} d x^{1} \wedge d x^{2}$ with $b^{k}=x^{k} / r^{3}$, in \mathbb{R}^{3}, with $r^{2}=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}$. What can you say of the value of the integral $\int_{M} \omega$ when M is a closed surface in \mathbb{R}^{3}. Compute first the integral for the unit sphere $M=S^{2}$!
4. Let $t \mapsto g_{t}$ be a smooth family of smooth functions $g_{t}: M \rightarrow G L(n, \mathbb{C})$ (parametrized by $t \in \mathbb{R}$). Here M is a three dimensional oriented manifold (without boundary). Show that the value of the integral

$$
\int_{M} \operatorname{tr}\left(g_{t}^{-1} \partial_{i} g_{t}\right)\left(g_{t}^{-1} \partial_{j} g_{t}\right)\left(g_{t}^{-1} \partial_{k} g_{t}\right) d x^{i} \wedge d x^{j} \wedge d x^{k}
$$

does not depend on the parameter t. Hint: Use Stokes' theorem.
5. Show that in the definition of the integral of a n-form ω over an oriented n manifold M the value of the integral does not depend on the choice of the covering $\left\{U_{\alpha}\right\}_{\alpha \in I}$ and the choice of the partition of unity.

