To be returned on Wednesday, November 21, 10.15am at latest

1. Show that the wedge product $f \wedge g$ of $f \in \Omega^{k}(V)$ and $g \in \Omega^{l}(V)$ is really in $\Omega^{k+l}(V)$.
2. With the notation of (1), show that $f \wedge g=(-1)^{k l} g \wedge f$.
3. Prove that the wedge product is associative.
4. There is a coordinate independent formula for the Lie derivative of a differential form. It is given as

$$
\left(\mathcal{L}_{X} \omega\right)\left(X_{1}, \ldots, X_{k}\right)=X \cdot \omega\left(X_{1}, X_{2}, \ldots, X_{k}\right)-\sum_{i=1}^{k} \omega\left(X_{1}, \ldots,\left[X, X_{i}\right], \ldots, X_{k}\right)
$$

where the X_{i} 's are arbitrary vector fields. The first term is just the directional derivative (in X direction) of the smooth function $\omega\left(X_{1}, \ldots, X_{k}\right)$ obtained by evaluating the differential form point-wise on the manifold. Derive from this the formula for the Lie derivative in terms of the components $\omega=\sum \omega_{i_{1} \cdots i_{k}}(x) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}$ in a local coordinate system.
5. Let X be a vector field and ω a differential form of degree k on a manifold. The interior product $i_{X} \omega$ is defined to be a form of degree $k-1$ given as

$$
\left(i_{X} \omega\right)\left(X_{1}, X_{2}, \ldots, X_{k-1}\right)=\omega\left(X, X_{1}, X_{2}, \ldots, X_{k-1}\right)
$$

for vector fields X_{1}, \ldots, X_{k-1}. Prove the relation $\mathcal{L}_{X}=d \circ i_{X}+i_{X} \circ d$. (You can use local coordinates, but it is also possible to prove the relation in the coordinate free formalism.)
6. Use the result of exercise 5 to show that Lie derivative and exterior differentiation commute.

