Hint. Suppose that the functions $\varphi_k : [a, b] \to \mathbb{R}, k = 1, \ldots, n$ are linearly independent functions in C([a, b]) and $f \in C([a, b])$ is given. The the least squares approximation of f in the subspace spanned by $\{\varphi_1, \ldots, \varphi_n\}$ is given by

$$f^* = \sum_{j=1}^n c_j^* \varphi_j \,,$$

where $c_j *$ satisfy the normal equations, i.e.

$$\sum_{j=1}^{n} (\varphi_j, \varphi_k) c_j^* = (f, \varphi_k), k = 1, ..., n.$$

If the functions $\{\varphi_1, ..., \varphi_n\}$ form an orthogonal system, then these constants are denoted by c_k and given by

$$c_k = (f, \varphi_k)/(\varphi_k, \varphi_k), j = 1, \dots, n.$$

File: d111hint.tex, printed: 2012-11-23, 16.22