Hint. Suppose that the functions $\varphi_{k}:[a, b] \rightarrow \mathbb{R}, k=1, \ldots, n$ are linearly independent functions in $C([a, b])$ and $f \in C([a, b])$ is given. The the least squares approximation of f in the subspace spanned by $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ is given by

$$
f^{*}=\sum_{j=1}^{n} c_{j}^{*} \varphi_{j},
$$

where $c_{j} *$ satisfy the normal equations, i.e.

$$
\sum_{j=1}^{n}\left(\varphi_{j}, \varphi_{k}\right) c_{j}^{*}=\left(f, \varphi_{k}\right), k=1, \ldots, n
$$

If the functions $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ form an orthogonal system, then these constants are denoted by c_{k} and given by

$$
c_{k}=\left(f, \varphi_{k}\right) /\left(\varphi_{k}, \varphi_{k}\right), j=1, \ldots, n .
$$

