MARTINGALES AND HARMONIC ANALYSIS

TUOMAS HYTONEN

Lecture notes of a course at the University of Helsinki, Autumn 2012.

1. CONDITIONAL EXPECTATION

1.1. Basic notions of measure theory. A triplet (Q, #, u) is called a measure space if

e ()is a set,
e Z is a o-algebra of Q, i.e., a collection of subsets of  which satisfies

oo
2,0eF, EcF=E“=Q\EcZ, EecF=|JEcZ,
i=0
e 1 is a measure, i.e., a mapping % — [0, co] which satisfies

o0 o
@) =0, Eie€F ENE =afori#j=p(|)E)=> wE).

i=0 i=0
A function f: Q — R is called .Z-measurable if f~1(B) :={f € B} :={weQ: f(w) € B} € F
for all Borel sets B C R. We denote by L°(.%) the space of all .#-measurable functions f : Q — R.
Most of the time, we think of the space 2 and the measure u as fixed, but we may consider
different o-algebras (and other families of sets) #; that is why we emphasize % but not Q and p
in the notation.

1.2. More definitions. We say that a collection &/ of subsets of Q contains a countable cover
if there are at most countably many sets Ao, A1,... € & such that Q = |J;2, A;. We say that a
subset o C % of a o-algebra .# is an % -ideal if ANF € o for all A € & and all F' € #. Note
that if an #-ideal o/ contains a countable cover, then this cover can be chosen pairwise disjoint;
indeed, if Ag, A1,... € & C .Z form a cover, then Fj := U?:o Aj; € F and

;q::Ak)\Fk—l :AkﬂF,f_led

by the ideal property, and these form a disjoint countable cover.
We denote by #° the collection of sets in .# with finite measure, i.e.,

FV.={Eec.Z:uE) <}
Clearly .ZY is an .Z-ideal. A o-algebra .7 is called o-finite if Z° contains a countable cover.
1.3. Lemma. Let o/, C % be F-ideals. Then
dNB={ANB:Aec o, Bc A}
and this set is an F-ideal. If both ideals <, B contain countable covers, then so does of N A.

Proof. If A € o and B € & C %, then AN B € & by the ideal property of A, and similarly
AN B € A by the ideal property of B. Thus AN B € &/ N 4. On the other hand, if F € &/ N A,
then E = AN B, where A := F € & and B := E € %. The ideal property of &/ N % is
immediate to check. If {4; : i € N} C & and {B; : j € N} C 2 are countable covers, then
{A;NBj:i,j e N} C .o/ N A is also a countable cover. O

1.4. Lemma. Let o/ C .F be an .Z-ideal that contains a countable cover. If f € Ll,(F,p)
satisfies [, fdu >0 for all E € o, then f > 0 a.e. (almost everywhere). The same is true if “>”
is replaced by “<” or “=".
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Proof. Let F; :={f < —1/i} € .# and A; € o/ be one of the sets from the definition of countable
cover. Since 7 is an ideal, we have F; N A; € &/ and then

1
0< / Jdu < / ( -
FiNA; F;NA; ?

Hence u(F; N'A;) =0, and summing up over j € N it follows that u(F;) < Z;C:o w(F;NA;) =0.
Since {f < 0} = U;=, Fi, we see that pu({f < 0}) = 0, which is the same as f > 0 a.e.

The case < is obtained from the one already treated by considering the function —f. The case
= follows from the other two upon observing that « = 0 if and only if x > 0 and =z < 0. O

1
)d,u = _gM(Fi N AJ) <0.

1.5. Sub-c-algebra. If ¥ C .% is another c-algebra, it is called a sub-c-algebra of .%. In this
situation the ¥-measurability of a function is a stronger requirement than its .%-measurability,
since there are fewer choices for the preimages {f € B}. Similarly the o-finiteness of (Q,%, 1)
is a stronger requirement than that of (Q,.%, ). In the sequel, however, all measure spaces are
assumed to be o-finite unless otherwise mentioned.

For f € L°(%), we denote

G ={GeY:1af € LYF)}.

Clearly this is a ¢-ideal.
1.6. Lemma. For every f € L°(F), the collection F; contains a countable cover.

It is important to observe that, in this lemma, we have the same o-algebra .Z is “f € L(%)”

and in “.%” here. It is not always true that ¥; contains a countable cover if ¥ C % is a smaller

o-algebra than the one with respect to which f is measurable.

Proof. Let E; € ZY be the sets from the definition of o-finiteness of .#, and let Fj := {|f] <
j} € #. Since f is real-values, we have Q = {|f]| < o0} = U;io Fj. Then each 1p,np, f € L' (F);
indeed |[1g,nr, fll1 < j-p(E;) < co. Thus {E;NF; :i,j € N} C % is a countable cover of Q. [

1.7. The conditional expectation. Let f € LY(#) and g € LY(¥), where &4 C .7 is a o-finite
sub-c-algebra. We say that g is a conditional expectation of f with respect to ¢ if there exists a
¥-ideal &/ C ¥ N'Y, that contains a countable cover and satisfies

/fdu:/gd,u VAe .
A A

1.8. Lemma. If f € L°(%) has a conditional expectation g € L°(¥), then it is unique (a.c.).
Moreover, ¥y contains a countable cover, we have ¥y C 9, and

/fduz/gdu VA € %Y.
A A

Proof. We prove the last assertion first. So let g be a conditional expectation, and &/ C ¥y N¥Y,
an associated ¢-ideal with a countable cover {4; : i € N} which we now choose disjoint. Let
G € 9, be arbitrary, and note that {g > 0},{g < 0} € 4. By the ideal property, we find that
A;NGN{g >0} €, and thus

/ gdp = / [ dp.
A;NGN{g>0} A;NGN{g>0}

/ gdp = / fdp.
GN{g=0} Gn{g=0}
Similarly, we get fGﬁ{g<O} gdp = me{g<0} fdu, and hence

/\gldu=/ gdu—/ gduﬁ/lf\du<oo G € 9,
G GN{g>0} gn{g<0} G

/gdu=/ gdu+/ gdu=/fdu~
G GN{g>0} gn{g<0} G

Summing over i € N, we get
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So indeed ¥ C ¥,, and we have fG gdu = fG fdpfor all G € ¢¥;. Clearly 9 contains a countable
cover, since ¢¥; D 7, and &/ contains a countable cover.

Suppose then that g1, go € L%(¥) are two conditional expectations of f. By the part that we
already proved, we find that

/gld,u:/fd,u:/ggdu VG € 9,
G G G

where ¥ is a @-ideal that contains a countable cover. Thus g = g1 — go € L%(¥) satisfies
fG gdp =0 for all G € 9, and Lemma 1.4 shows that g; = g2 almost everywhere. O

The conditional expectation of f with respect to ¢, now that it has been proven unique, will
be denoted by E[f|¥]. Next it will be shown that it always exists, provided only that ¢; contains
a countable cover. Clearly this condition is necessary by Lemma 1.8.

1.9. Existence for L2-functions. The spaces L*(.%,p) and L*(¥, 1) are both Hilbert spaces,
and the latter is a closed subspace of the former. If f € L2(.#, u), let g € L*(¥, 1) be its orthogonal
projection onto the space L?*(¥,u). Hence f —g L L?*(9,u). If G € 9°, then 1g € L3(9, ).
Hence

0=(f=0.10)= [ (f=a)dn
and thus g satisfies the definition of conditional expectation for the countably-covering ¢-ideal ¢°.

1.10. Simple observations. If g € L°(¥, 11), it is its own conditional expectation, g = E[g|¥].
In particular, the conditional expectation of a constant function is the same constant.

Linearity. Suppose that fi, fo € L%(%) have conditional expectations g; = E[f;|¥] € L°(¥), so
in particular [ ¢ 9idu = /. o fidu for all G € 9, C 9., and &, contains a countable cover. By
Lemma 1.3, & =%, N9, C 9, NY,, is a Y-ideal containing a countable cover, and clearly

A C ga1f1+a2f2 n ga191+a292
and for all A € &7, we have

/(alfl +asfo)dp = Oq/ fi le-OQ/ fadp = 041/ 9 le-OQ/ g2dp = / (@191 +a2g2) dp.
A A A A A A
Thus E[ay f1 + asf2|¥] exists and equals aqE[f1|9] + asE[f2]¥].

Comparison. If the pointwise (a.e.) inequality fi < fa holds, then also E[f1]|¥] < E[f2|¢]. This
follows from the fact that for all G € ¥f, N¥Yy, (which is a ¥-ideal containing a countable cover
by Lemma 1.3) we have

/GE[fﬂg]dM:/C:flduS/Gfgdu:/GIE[f2|g]dM
and Lemma 1.4.

This implies that if f € L%(Z, ), and both E[f|¥] and E[|f||¥¢] exist, there holds
E[f|4]| = max {E[f|¢], —E[f|9]} = max {E[f|¥], E[-f|4]} < E[f]|¥],
where the last estimate was based on the facts that both f < |f| and —f <|f].

1.11. Existence for L!-functions. Let then f € L'(.#,u). By basic integration theory there
exists a sequence of functions f, € L*(#,u) N L?(.#, u) such that f, — f in L'(%,u). By 1.9
the conditional expectations g, := E[f,|¥] and E[|f,||¥] exist and belong to L*(¥, ).

Note that 4y, =9 =9, for f, € L'(F), and hence

||gn|\1=/Q|gn|du=/Q|E[fn\nguéAE[lfn||g]du=A\fnldu=anlll-

Repeating the previous computation with g, replaced by g, — gm, it similarly follows that
lgn. — gmll1 < ||fn — fimll1, and this tends to zero as n,m — oo, since f,, — f. Hence (g,,)22; is a
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Cauchy sequence in L!(%) and hence converges to some functions g € L'(%). This g satisfies, for
all G € 4, the equality

[odu=tm [ gian= tim [ Elp )= tim [ fadu= [ s
and hence g = E[f]¥].

1.12. Existence in general. Let finally f € L°(.#) such that ¥, contains a countable cover. Let
G; € 9 be disjoint sets such that |J;°,G; = Q, which thus can be chosen. Now f; := 1¢g,f €
LY (F), so there exists g; := E[f;|¥9] € L}(9, ).
We set g := Z;’io 1@, gi, which converges pointwise trivially, since the G; are disjoint sets. We
check that g is a conditional expectation of f, with an associated ¢-ideal
o ={G ¥ :GCQG, for some i € N}.

Clearly this is an ideal containing a countable cover, namely, the sets G;, i € N. Moreover, if
A € of with A C G;, then both 149 = 149; and 14f = 14 f; are integrable, and

Ang:Agid/‘:Afid/l:Afdu.

Thus & C ¥y NY,, and the required identity holds for all A € &
Altogether, the following result has been established:

1.13. Theorem. Let f € L°(F), and 9 C .F be a sub-o-algebra. Then E[f|¥4] € LY(9) exists if
and only if

G ={GeY:1gf € L'(F)}
contains a countable cover.

Next, some further properties of the conditional expectation will be investigated with the help
of the following auxiliary result:

1.14. Lemma. Let ¢ : R — R be a convex function, i.e.,
d(Ar1 + (1 = N)x2) < Aé(x1) + (1 — N)p(x2) Vz,m €R, YV AE0,1],
and
Hy:={h:R — R|h(z) = ax + b for some a,b € R, and h < ¢}.
Then ¢(x) = sup{h(x): h € Hy}.
Proof. For all h € Hy there holds h < ¢, and hence sup,,¢ H, h < ¢; thus it remains to prove the

reverse inequality.
Let g € R. We claim that

?(y) — ¢(x0) _ #(2) — ¢(x0)

Yy —To Z— X

IA

for all y < zg < z.

Indeed, the claim is equivalent to

(e + = )ole0) < ——0ly) + ——6(2),

To—Y <2—2o To—Y Z =0

which can be written as
d(x0) < A(y) + (1= Ng(2), A= 1/(xo —y) _ z—xp

(xo—y)+1/(z—x0) 22—y

where
=Y
Thus the claim follows by definition of convexity with x1 =y, z2 = 2z, and A = (z — z¢)/(z — y).
Let us now choose any

e [oup HO=020) 4y 96) = blon)]

y<zo Y—To z>m0 2z —Tp
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where the interval in nonempty by what we just proved. This choice implies that

a(x — o) < ¢(x) — d(wo) Vo # o,
or in other words ho(x) := ¢(zo) + a(x — x9) < ¢(z) for all z € R. and ho(xg) = ¢(zo). Since xg

was arbitrary, this completes the proof. O

1.15. Theorem (Jensen’s inequality). Let f € LY(F), ¢ : R — R be convex and 95, Gpor contain
countable covers. Then

o(E[f14]) <E[o(f)9].
Proof. Let h € Hy. Then
h(E[f|9]) = aE[f|¥] + b= E[af + 0|9] = E[n(f)|¥] < E[¢(f)|¥].

Computing the supremum on the left over all h € Hy, the claim follows O
1.16. Corollary. Letp € [1,00]| and f € LP(F). Then E[f|9] € LP(¥) and
IBLF1D ] < 11f[lp-

Proof. Let p < oo, the case p = co being easier. For f € LP(.Z), we have ¥ 2 ¢°, which con-
tains a countable cover by o-finiteness, so the conditional expectation E[f|¥] exists, and similarly
E[|f|P |4], since |f|P € L'(Z). Since the function ¢  [¢|P is convex, Jensen’s inequality implies
that

[ELfZ]IP <E[If]” 4]
Integrating over 2 € 4|¢», we get

IELf1]|E = /Q E[f9)P du < / E[|f|? 9] dys = / 1P du = | 2. 0

Next, versions of the familiar convergence theorems of integration theory are presented for the
conditional expectation.

1.17. Monotone convergence theorem. Recall that the version of integration theory says that
if a sequence of measurable functions satisfies 0 < f,, / f a.e., then [ f,dp [ fdu, where
fn /" f means “converges increasingly”, which entails both the convergence f,, — f and the fact
that f,, < frpq1 for all n. The corresponding statement for the conditional expectation is the
following:

0< fo / fEL(Z,n) (where ¥, contains a countable cover) = E[f,|¥4] / E[f|¥].

Proof. Note that each ¥, O %} also contains a countable cover. Since the conditional expectation
respects pointwise inequalities (part 1.10), it follows that

Oanan-l—l Sf = OSE[fn|g] SE[f7L+1|g] SE[f|g]

Hence (E[ fn\g])f;l is a bounded increasing sequence, so it has a pointwise ¢-measurable limit,
E[fnl¥] /" g, and 0 < g < E[f|¥4]. It remains to prove that g = E[f|¥].
For all G € ¥y C (", ¥}, there holds

[odn= [ tm slrg)an = tim [ Big g du= tim [ fade

n—oo

/ lim fndMZ/ fdu,
G7L_)OO G

where the steps marked with x were based on the usual monotone convergence theorem. Thus it
follows that g = E[f|¥], which completes the proof. O
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1.18. Fatou’s lemma. The version of integration theory says that

n—oo

>0 = /hmmf fndu < hmlnf/fn du.

For the conditional expectation we similarly prove
0< fo € LY(F), f:=liminf f, € L°(.F)
n—oo

(where each %, %, contains a countable cover)
= E[f|¥9] < lminfE[f,|¥].

Proof. Write out the definition of the limes inferior:

f =liminf f, = lim inf f,, =@ lim h,, hy = ir;f fm-

n—oo n—oo m>n n—0o0

For every m > n, we have h, < fp,, hence E[h,|¥9] < E[f,|¥], and by taking the infimum,
E[h,|9] < infy>n E[fn|¥]. Moreover, we have 0 < h,, /' f € L°(F), so we can use the monotone
convergence theorem to the result that

E[f|¢9] = E[ lim h,|9] = lim E[h,|¥9] < lim mf E[fm|¥] —hmlnfE[fn\g] O

n—o0 n—00 n—oo m n

1.19. Dominated convergence theorem. In integration theory one proves that

foo b lfal g€ LN (F ) = /\fn—f\du—>0 = /fndw/fdu,

while the conditional version reads as follows:
fon = F, |ful < g€ LO(F, p) (where 9, contains a countable cover)

Proof. This is left as an exercise. O

The following central result concerning the conditional expectation has no obvious analogue in
the basic integration theory:

1.20. Theorem. Let f € LY(F), where 9y contains a countable cover. If g € L°(¥), then also
Y4+ contains a countable cover, and

Elg- f14] = g - E[f|9].
Proof. Let {F; : i € N} C ¢; be a countable cover, and let G; := {|g| < j} € 4. Then
Ilrng,9- flli <J- 1k flli < oo, and {F;NG; :i,j € N} C 9N, ¢ is a countable cover.

To prove the identity, suppose first that g is a simple ¢4-measurable function, g = Zgzl arla,,
where G, € 4. Then for all G € ¥y NY,.; there holds

[ o B4 - Zak/ E[f[9] du = Zak/

GNGg GNGy

fdu=/Gg-fdﬂ,

hence g - E[f|¢9] = E[g - f|¢] by the uniqueness of the conditional expectation.

If g is a general ¥-measurable function, by measure theory there exists a sequence of ¢¥-simple
functions g, with |g,| < |g| and g, — g. Hence also |g,, - f]| < |g- fland g, - f — ¢ - f. An
application of the dominated convergence theorem and the first part of the proof gives

Elg- f|9) = lim Elg, - f1%] = lim g, - Elf|9] = g E[f|4)

which was to be proven. O
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1.21. Exercises. These deal with some further important properties of the conditional expecta-
tion.

In all exercised it is assumed that €2 is a set, .# and ¢ are its o-algebras with ¥ C .%, and
. F — [0,00] is a measure. Moreover, all functions are assumed to be .#-measurable. Except
in Exercise 1, it is also assumed that all measure spaces are o-finite.

1. Give an example of the following situation: (€, .%#,u) is o-finite but (2,9, ) is not.

2. Prove the dominated convergence theorem for conditional expectations. (See Section 1.19.)

3. Prove the tower rule of conditional expectations: Let J# C ¢ be yet another o-algebra,
and f € L°(Z) be such that /#; (and hence also %5 D ) contains a countable cover.
Then

E(E[f(9]|#) = E[f.#].

4. Prove the conditional Hélder inequality: If f € L°(F,u) and g € L°(F, i), where T

and % g’ contain countable covers, then also ¥., contains a countable cover, and

E[f - g|9] < E[|f]P|9)"/7 - E[ f|7'|4]"/7".

(Hint: prove or recall first that for all a,b > 0 there holds ab < a? /p + b” /p'.)
5. Let 2 = #(R) be the Borel o-algebra on R, and

#:={BePB:—B=B}, —B:={-x:x € B}.

Check that 2 is a o-algebra, and that for every f € L°(R, %, dx) (where dx is the
Lebesgue measure), %y contains a countable cover, and

E[f|#)(z) = 5(f(x) + f(~x)).

1.22. References. The material of this chapter, when restricted to the case of a probability
space (i.e., a measure space with u(€2) = 1), is standard in modern Probability and can be found
in various textbooks, such as the lively presentation of Williams [16]. It is well known “among
specialists” that most of the results remain true in more general measure spaces, but this extension
is seldom found in a systematic way in the literature. A somewhat different framework from the
present one was recently introduced by Tanaka and Terasawa [15].

2. DISCRETE-TIME MARTINGALES AND DOOB’S INEQUALITY

2.1. Definition. Let (Q,.%, 1) be a measure space and I an ordered set.
o A family of g-algebras (.%;)er is called a filtration of Z if #; C #; C . wheneveri,j € I
and ¢ < j.
e A family of functions (f;)ser is called adapted to the given filtration if f; € L°(.%;) for all
1el.
Let, in addition, the measure spaces (€2, .%;, u) be o-finite.

e An adapted family of functions is called a submartingale if f; € L°(.%;) for all i € I, and
for all # < j, the conditional expectations E[f;|.%;] exist and satisfy f; < E[f;|.Z;].

o It is called a martingale if the last inequality is strengthened to the equality f; = E[f;|.Z;]
whenever ¢ < j.

If fe LY(Z,u) and (F;)ie; is a filtration such that (%;); contains a countable cover for every
it € I, then setting f; := E[f|.%;] for all i € I one gets a martingale. If (f;);cs is a martingale, then
(Ifil)ie: is a submartingale. These facts are easy to check.

In applications the index i € I often admits the interpretation of a time parameter. In these
lectures the considerations are restricted to discrete-time filtrations and martingales, where I C Z.
If I C Z is a proper subset and (.%;);cr and (f;);cr are a filtration and a martingale with the
corresponding index set, then one can always define %; and f; also for ¢ € Z \ I in such a way
that (%;)icz and (f;)iez are also a filtration and an adapted martingale (exercise).
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2.2. Questions of density. Let us denote

i€Z
Recall that the notation o(&), where o7 is any collection of subsets of €2, designates the smallest
o-algebra of € which contains 7. It is obtained as the intersection of all o-algebras containing
&/ there is at least one such o-algebra (the one containing all subsets of §2) and one easily checks
that the intersection of (arbitrarily many) o-algebras is again a o-algebra.

Although it is not required in the definition of a filtration, it is interesting to consider the situ-
ation where the filtration (.%;);cz generates the full o-algebra #, i.e., # = %,. In the described
situation it is natural to ask whether .#-measurable sets or functions can be approximated by sets
in {J;ez % or functions measurable with respect to these generating c-algebras. The following
results provide positive answers to these questions.

Let us denote by Z the collection of those sets of .Z whose finite parts can be approximated
by sets of | ;4 %4, more precisely
7:={Fe 9‘VEO € F°Ve>03F €| Fi: pu(Bo N[EAF)) <},

i€Z
Here EAF designates the symmetric difference of sets, EAF := (E\ F)U (F \ E).

2.3. Lemma. Let (%;)icr be a filtration, and Foo = O’(Uiez 9}) Then Foo = F.

Proof. Clearly J,cp, #i € F C Foo. (The first ”C” follows from the fact that if £ € (J;c, -7,
then F = F works as the approximating set in the definition of .Z for all Ey and e.) Thus it
suffices to show that .Z is a o-algebra. For then — due to the fact that %, was the smallest
o-algebra containing J;., #; — it follows that .7, C Z, and this implies the assertion.

Trivially @,Q € .#, and the implication E € % = EC¢ € .Z follows from the fact that
if u(Ep N [EAF]) < &, then also u(Ey N [ECAFC]) < & (since ECAF¢ = EAF), and thus
FC e Uicz i works as an approximating set for EC. Tt remains to prove that Ej, € F = E =
U;O:l E, € j

Fix By € ZY and ¢ > 0, and denote po(G) := u(Ey N G); this is a finite measure. Since
Uiv:1 Ey /' E,ie., E\ U/JCV:1 Ey \, 9, for sufficiently large N there holds the estimate

N
,uO(E\ U Ek> <e.
k=1

Let Iy, € ey Fi satisfy po(ExAFy) < € - 2~k Hence F}, € Fi(ky for some i(k) € Z. Let
j = max{i(k);k = 1,...,n}, so that F}, € %, for all k = 1,...,n (since (%;);ez is a filtration)

and hence also
N

F .= UFkEQJgUﬁZ
k=1 i€Z
Now one can estimate

N N N
1o(E\ F) < MO(E\ U Ek> +Y ho(Bu\F) <e+ > e-27F < 2,
k=1 k=1 k=1
N

po(F\E) <> po(Fi \ Er) <e,
k=1

hence po(EAF) < 3¢, and the proof is complete. O
2.4. Lemma. Let the assumption of Lemma 2.3 be satisfied, and in addition the measure spaces

(Q, F;, 1) be o-finite. If E € F°, then for all € > 0 one can find an F € ., F;, such that
WEAF) < e.

€L
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The difference compared to the previous lemma is the fact that there is an estimate for the
measure of the full difference set EAF and not only its intersection with a given FEj.

Proof. Since (e.g.) o is o-finite, there are sets Ay € Z{ of finite measure with Ay, Q. Then
E\ A; \, 9, so for some k there holds u(F \ Ax) < e. Set Ey := Ay and apply Lemma 2.3. This
gives a set F' € |J,.,-%; such that u(Fo N [EAF]) < e. Also Fy := EgNF € |, ., %, and this
satisfies

€L 1€L

WE\ Fy) = p(E\ Bo) + n(By N E\F) <25, p(Fy\E) = p(EoNF\ E) <<,

Hence Fj is a set of the desired type (with the value 3¢). O

As a consequence we get a density result for functions:

2.5. Theorem. Let (%;)icz be a filtration of the space (QU,.F, ), where the associated measure
spaces are o-finite and F = U(UiEZ ﬂ}) Let p € [1,00). Then

U LP(Fi, 1)

i€z
is dense in LP(F, ).
Proof. Let f € LP(%,u). By integration theory there exists a simple function g = 25:1 arle,,
where Ej, € Z°, such that ||f — g||, < e. By Lemma 2.4 there are sets F), € 521%6) C .70, where

ji=max{i(k) : k = 1,...,N}, such that puo(ExAFy) < §. Letting h := Z,ivzl axlp,, it follows
that

N N N
lg = hlly < laxl - e, — 1rlly = > lar] - p(BRAF)YP < 6P " ax| <,
k=1 k=1 k=1
as soon as ¢ is chosen sufficiently small. Hence || f — k|, < 2¢ and h € LP(%;, u). O

2.6. Lemma. For f € LP(%), p € [1,00], and ¥ C %, we have

—E[fl9]|l, <2 inf — .
If - ElfiLll, <2_inf If =gl

Proof. Let g € LP(¥) be arbitary. Then g = E[g|¥], so using the linearity of E[ |¢] we get
IELf19] = Fllp = |ELf — 919+ 9 — fllp < 1Elg = fI9]llp + lg — Fllp < 2llg = Fllp,

and taking the supremum over all g € LP(¥¢) completes the proof. O

2.7. Corollary. Under the assumption of Theorem 2.5, for all f € LP(F,u) there is convergence
E[f|%#] — f in the sense of LP(F, u)-norm, when i — oo.

Theorem 2.5 said that there exist good approximations for f in the spaces LP(%;,u); this
corollary tells that conditional expectations provide a way of finding them explicitly.

Proof. Let ¢ > 0. By Theorem 2.5 there are j € Z and g € LP(%;,u) C LP(F;, pu) for all i > j,
such that ||f — g||, < €. Hence, by Lemma 2.6

B[] = Fllp < 2llg = fllp < 2e,

for ¢ > j. O
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2.8. A question of pointwise convergence. According to the general integration theory, a
sequence of functions which converges in the LP norm also has a subsequence converging pointwise
a.e. In the situation of the previos corollary, one does not even need to restrict to a subsequence,
but proving this fact requires a certain auxiliary device. Let us sketch the proof as far as we can
at the present to see which estimate we are still lacking. First of all,

[ELf17] £ £} = {Tmsup [E[f7] - f| >0} = [ {lmsup|[E[717] - 1 > -},
11— 00 ’I’L:l 11— 00

so it suffices to prove that for all € > 0 there holds
p({timsup [E[f| 7] - f| > }) = 0.
Let 6 > 0, and let j € Z and g € LP(.%;, u) be such that ||f — g, < d. Then
\E[f|7:] — f| < [E[f — 9|7l + [Elg|-Fi] — gl + |9 — f.

Taking limsup,_, ., of both sides and observing that the middle term approaches zero (it even
equal zero as soon as i > j), it follows that

n({ limsup |[E[f[.Z] — f| > 2¢}) < p({ limsup [E[f — g|Zi]| > e} +u({lg—fI>¢€}).
The latter term satisfies the basic estimate

n({lg = fI>e}) <ePlg = £l < (9/e)",

which can be made arbitrarily small, since § > 0 can be chosen at will.
The remaining lim sup-term can be estimates by

limsup [E[f — g|.Zi]| < S}ElgEHf —gl[#] = M(|f = g0),

1— 00

where the above defined (nonlinear) operator M is Doob’s mazimal operator. So there holds
p({limsup [E[f — g|7i]| > e}) < u({M(|f - g]) > €}),

and we would need an inequality of the type pu({Mh > e}) < CeP|[h||% to finish the estimate.
This follows from Doob’s inequality for the maximal function.
Let us first define the maximal function in a slightly more general setting:

2.9. Doob’s maximal function. Let (f;);cz be a sequence of functions adapted to a filtration
(Z%)icz- Let us denote the whole sequence simply by f; hence f = (f;)iez is not itself a function
but a sequence of functions. Then its Doob’s maximal function is defined pointwise by

Mf = f*:=sup|fi|
i€Z
Observe that this notation is in agreement with the situation considered above, where f €
LL(Z, ) is as function and f; = E[f|.Z,].

2.10. Theorem (Doob’s inequality). Let f = (f;)icz be a nonnegative (f; > 0) submartingale with
sup;ez || fillp < oo, where p € [1,00].

o Ifp=1, then for all A\ > 0, we have

A~u(f*>A)§/

{r*>

[fldp < [l
A}

o Ifpe (1,00], then f* € LP(F, ) and more precisely

1f*lp < P sup || fillp-
1E€EZL
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The analogous results for martingales (even without the requirement that f; > 0) follows at
once, for if (f;)iez is a martingale, then (|f;|);ez fulfills the assumptions of the theorem. The
constant p’ in the inequality is the best possible (in the sense that the result does not hold in
general if p’ is replaced by any number ¢ < p’) — this fact will be proven in the exercises.

Doob’s inequality also has a so-called weak-type version for p = 1, but this will not be dealt
with here.

2.11. Preliminary considerations. Before the actual proof of Doob’s inequality, we make some
simplifying considerations. First of all, notice that the case p = oo is trivial, so in the sequel we
will concentrate on p € (1,00).

Observe that it suffices to prove the claim for submartingales (f;);en indexed by the natural
numbers. Namely, from this it follows (just by making a change of the index variable) that the
estimate also holds for martingales with the index set {n,n+1,n+2,...} with an arbitrary n € Z,
ie.,

[sup fillp < p" - sup || fillp-
i>n i>n

But clearly sup;s,, fi /" sup;ez fi as n — —o0, so the monotone convergence theorem (the usual
form from integration theory) implies that

[sup fill, = lim_|[[sup fill, <p"- lim sup| fill, =p"-sup||fill,-
i€Z nN—=00  ji>n 1= =0 i>n €L

Next observe that one can even restrict to finite submartingales (f;)7, with the index set
{0,1,...,n}. Passing from here to the case of all N can be realized by a similar monotone
convergence argument as above. So it remains to prove that

/ e /- .
Il max fill, <#' - max 11 fiully = 2"+ 1 fullys

the equality above follows from the fact that 0 < fi, < E[f,,|-#], and hence || fxll, < ||fnllp for all
k=0,1,...,n.

The L' estimate can be reduced to the finite case by using the continuity of the measure in
place of monotone convergence:

{rF>x=Ubwi>N = p(f>3= lim_psupfi >N

nez >n i>n
and

{supfi>Ap=J{swp fi>A} = p(supfi >X) = lim p( sup fi > A).
ieN nen 0<i<n ieN n—00 0<ikn

2.12. Stopping times. The proof of Doob’s inequality makes use of a simple version of a powerful
stopping time argument. A stopping time is defined as any function
T:Q—ZU{—00,00},
with the property that
{r<k}={weQ:7(w) <k} eF Vk € Z.

We will usually consider stopping times that do not take the value —oo.
Note also that for any stopping time, we have

{r=k}={r<k}\{r <k—-1} € Z,
and
{Tzk}:{TSk—l}Cefk_l.
The idea behind a stopping time is the following: Think of k € Z as the parameter, and .7}
as all the information that we have at time k and all previous times. Let 7 be the first time
when something that we can observe happens. Thus, at time k, we know whether the event has

happened by the time k. In other words, the event {7 < k} (“something that we were looking for
has happened at the time k or earlier”) belongs to %) (“our complete knowledge at time k”).
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A typical example of a stopping time is obtained by
=inf{k: fr > A\} (inf @ := o0)

where (fi)rez is an adapted sequence (i.e., fj is Fr-measurable). To see that this is a stopping
time, note that for all k € Z, we have

{r<k}=J{r >,

J<k
where {f; > A} € .%; C %}, and thus also the union belongs to .#;. Note also that
{r =00} ={f" <A}

In the proof of the finite version of Doob’s inequality obtained above, we will consider the
variant

=inf{k € {0,1,...,n}: fi > A} €{0,1,...,n} U {oo}.

So, starting from 0, the time 7 is the first index k£ such that fix > A, or 7 = oo, if no such index
exists.

2.13. Proof of Doob’s L' inequality. Let us write f; := maxo<g<n fr. We use the stopping
time just defined:
n

Ml N =pr <o =S ur= =3 [ an

k=0
If 7 = k, then, by definition, fi > A, and thus
1

1 1
[ oans [ nde=5 [ mGIa=5 [ e
{T:k} {T:k} {T:k} {T:k}

where we used the submartingale property and the definition of the conditional expectation, ob-
serving that {7 = k} € .%;. Combining everything and summing up, we have

w(fr>N) = Z/Tk}

1 1 1
< fndu_—/ fndu:f/ frdp < < fallr
/\Z/T k} {r<oo} AJirsay

which is precisely Doob’s L! inequality in the finite case.

2.14. Proof of Doob’s LP inequality. We make use of the formula
0= [ gy dn) = [ ow s >
0

and the L! inequality that we already proved:

[t navs [Coets /{M}f () dpu(w) dA
/ /p)\p ()i fz @) >apfn (W) dp(w) dA
//f 7 2 () du(w)

- f P 1fn / fn p ! d,u
- [ S hwr )
We apply Hélder’s inequality:

[antgrraus ([ sman) (e a)"™ < nblsi
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since (p— 1)p’ =pand 1/p’ = (p — 1)/p. So altogether, we have

£ 15 < DN fullo AR 1B

If || fx]l, < oo, we just divide both sides by || fx[[5~!, and get what we wanted.
To check the finiteness, observe that

0<k<n

fr= max fi <Y fi,
k=0
thus
1530 < D M fklls € D I falle = L+ n) [ fallp < oo

k=0 k=0
Note that the last, easy estimate is of the same form as the bound | f%|, < p'||fnll, that we
wanted, but with a bad constant 1 + n, the length of the martingale, instead of p’. It would be
impossible to get anything useful for infinite martingales by passing to a limit in this inequality.

2.15. Convergence of martingales to the reverse direction. We have seen that if (.%;);cz
is a filtration with 0(,cz %) = Foo = #, then for all f € LP(F,p), p € (1,00), there holds
E[f|#;] — f when j — oo, both in the L? norm and pointwise a.e. What about j — —o0?

Let make the following additional assumption:

VF €.F ooi=[)F: uF)e{0,00}.
jez
Then for all f € LP(F, pn), p € (1,00), there holds E[f|.#;] — 0 when j — —oo, both in the L?
norm and pointwise a.e.

Proof. At a.e. point w € €, the sequence (E[f|.%;]), ez is bounded from above and from below by
the numbers M f and —M f. In particular, it has finite pointwise lim sup and liminf as j — —o0;
let the first one be denoted by g. A basic observation is that
g = limsup E[f|.%;] = limsup E[f|.Z]]
j——oo i>j——o0

can be computed by restricting to the tail j < i for any fixed ¢ € Z. In particular, as the upper
limit of .#;-measurable functions, g itself is .%;-measurable. Since this is true for all 7 € Z, the
function g is in fact ((;cz 7;)-measurable.

In particular, for all € > 0 there holds u({|g] > €}) € {0,00}. The latter possibility cannot
hold, since |g| < M f € LP(F, 1), and hence u({|g| > e}) < e P|[M f||} < oo. Thus u({g # 0}) =

M(UZOZI{M > n‘l}) =0, and therefore g = 0 a.e.

A similar argument shows that also liminf;_,_ E[f|.%;] = 0, so in fact there exists the point-
wise limit lim;_, _ E[f|.%;] = 0. By the dominated convergence theorem (the dominating function
being M f) it follows that the convergence also takes places in the LP norm. O

By combining the convergence results of this section, the following representation of a function
in terms of its martingale differences is obtained:

2.16. Theorem. Let (2,7, 1) be a measure space and (F;)jez its filtration, such that the spaces
(Q,.Z;, 1) are o-finite. Let, in addition,

J(Ufij):fi, VE e () Z: u(F) € {0,00}.
JEL JEZ
Then for all f € LP(F, ), p € (1,00), there holds

o0

=Y (ElfIF] - Elf|F-1]).

j=—o0

where the convergence takes place both in the LP-norm and pointwise a.e.
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Proof. By using the obtained convergence results and writing out the difference as a telescopic
sum, it follows that

n

f=f=0= lim E[f|F,]~ lm B[f|Fn]= lm ZH (E[f|.7;] — E[f1F; 1)),
m——0o0 J=m

and the existence of the limit on the right is, by definition, the same as the convergence of the
series in the assertion. O

2.17. Exercises. Many of the exercises deal with applications of martingale theory and especially
Doob’s maximal inequality to classical analysis.

1. Prove that a filtration indexed by a subset I C Z of the integers Z and a martingale
adapted to it can be extended so as to be indexed by all of Z. More precisely: Let (%;)icr
be a filtration and (f;);e; a martingale adapted to it, where I C Z. Define #; and f; for
i € Z\ I in such a way that also (%#;);cz is a filtration and (f;);cz a martingale adapted
to it.

2. With the help of Doob’s inequality, derive Hardy’s inequality: for all 0 < f € LP(Ry)
(where Ry = (0, 00) is equipped with the Borel o-algebra and the Lebesgue measure)

[/000 (% /Ow fy) dy)pdx} e <p/[/0oo F@)P dx} 1/p.

(Hint: For a fixed § > 0, consider the filtration (%,,)ncz_, where
G = J({(O, |n|d], (Ko, (k+ 1)d] : |n| < k € Z})

Take the limit 6 \, 0 in the end.)

Notice that it is possible (and not particularly hard) to prove Hardy’s inequality also
by other methods, but the point of the exercise is nevertheless to derive it as a corollary
of Doob’s inequality.

3. Show that the constant p’ is optimal in Hardy’s inequality, and hence also in Doob’s
inequality. (Hint: investigate e.g. the functions f(z) = 1;(x) - %, where I C Ry is an
appropriate subinterval and « € R.)

4. Denote the collections of the usual dyadic intervals of R by @, := {27F[j,j + 1) : j € Z},
where k € Z. For all 3 = (B1)rez € {0,1}%, define the collection of shifted dyadic intervals
by

7= H+Y B2 = {1+ S p2iIe %},
i>k >k
where I + c:=[a+¢,b+¢) if I = [a,b). Note that 20 = 2., where 0 stands for the zero
sequence. Denote the corresponding o-algebras by ﬁkﬁ = 0(95). Show that (yzf)kez is
a filtration for all 8 € {0, 1}2.

5. Keeping the notations of the previous exercise, define the collection of all (shifted) dyadic
intervals 27 := Ukez _@,'f. Consider the particular sequence 3 € {0,1}%, where 3 = 0 if k
is even and [ = 1 if k is odd. Prove that, with some constant C € (0, c0), the following
assertion holds: If J C R is any finite subinterval, there exists either I € 2° or I € 27,
such that J C I and |I] < C|J|. (Hint: it might help to sketch a picture.)

6. For f € Li (R), its Hardy—Littlewood mazimal function is defined by

loc
1
Mypf(x) = Sup /1 |f(y)| dy,

where the supremum is over all finite subintervals I C R which contain z. (Usually
this is denoted simply by M but now the subscript HL is used to distinguish this from
Doob’s maximal function.) Use Doob’s inequality to derive the Hardy—Littlewood maximal
inequality

IMusfly < Collflpy pe (1,00
(Hint: Use the result of the previous exercise to show that Mgy f is pointwise dominated
by the sum of two Doob’s maximal functions related to different filtrations.)
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7. For a sequence of functions ]? = (fr)rez (not assumed to be adapted), consider the norm

= |(510)

keZ

e

Recall how to prove that || f||z» = sup{[ fgdu : ||lgl|,»» < 1}, and use the same ideas to
show that

£l zo (eay = Sup{/kagk dpe 2 [l Lo pary < 1}-
kez

8. Prove that Doob’s inequality (in Lp/) is equivalent to the following estimate:
(+) | S Bz <0 > A
kez P kezZ

for all nonnegative sequences of functions f; € LP(.%). That is, derive () from Doob’s
inequality, and conversely, give a new proof of Doob’s inequality by assuming (). (Hint:
use Exercise 7. You can use the result ‘as a black box’ even if you did not do that Exercise.)

9. Prove the estimate (*) directly (without using Doob’s inequality) for p = 2. (Hint: multi-
ply out the square in the L? norm.)

, p € [1,00).
P

2.18. References. Doob’s inequality appeared for the first time in Doob’s classic book [4]. We
have followed the ideas of the original proof, which is also commonly done in most more recent
books on the topic (e.g. [16]). A completely different proof is found in Burkholder’s summer school
lectures [3] and in the previous edition of these lecture notes from 2008. The idea for Exercises 2
and 3 is also from Burkholder [3], and Exercises 5 and 6 from Mei [10].

3. MARTINGALE TRANSFORMS AND BURKHOLDER’'S INEQUALITY

3.1. Martingale differences. Let us for simplicity consider a finite martingale (f3)7_, adapted
to a filtration (%%)7_,. We also define f_; := 0. The difference sequence of f is given by

di = fr = fe—1,
and it has the two following properties:

e d € Lo(y}c); indeed, f; € Lo(fk) and fr_1 € Lo(ykfl) - Lo(yk).
o Eldy|-Fr—1] =0tor k =1,...,n; indeed,

Eldk|Fk-1] = E[fr| Fr—1] — E[fe—1|Fr-1] = fe—1 — fr—1 = 0.
Let us call any sequence (dj)7_, with these properties a martingale difference sequence.

3.2. Lemma. There is a one-to-one correspondence between martingales (fi)}_, and martingale
difference sequences (di)j_q, given by

dp = fo— foer fo=D_d;.

Proof. We already saw that a martingale defined a martingale difference sequence. Let then a
difference sequence dj, be given, and define fi, by the above formula. Since d; € L°(.%;) C L°(%y,)
for j < k, we see that fi, € L°(%%). To check the martingale property, observe that

N
=

E[fe|Fk-1] =

™

N L

k-1
Eld;|Fk-1] + Eldy| Fp-1] = Zdj +0=fi-1,
J Jj=0

using again that d; € L°(.%;) C L°(%,_1) and the martingale difference property to the last
term. O
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3.3. Martingale transform. A sequence (vg)j_, is called predictable (or previsible) if vy €
L%(Fy) and vy, € LO(Fy,_4) for k > 1.

The transform of a martingale f by a predictable sequence v is the sequence v f = ((v* f)r)}_o
defined by

k
(v f = Zvjdja
=0

where d; is the difference sequence of f. We immediately check that
]E[’Ujdj‘ﬁj_l] = Uj]E[dng\j_l] =5 0= 0,

so that v;d; is again a martingale difference sequence, and therefore v * f is a martingale. This
justifies the name ‘martingale transform’.

Possible interpretation in applications: A martingale is a model of a ‘fair gamble’ between two
players: fj represents your accumulated winnings at time k, so that dp = fr — fr_1 represents
your winning (and thus your opponents loss) on the kth round of the game. Since the game is fair,
the expectation of your kth-rounf winning, conditioned on the history .#;_1 up till time k& — 1, is
E[dk|-Fk-1] = 0.

Now suppose you can increase or decrease your stakes at the game, if you believe that you are
more or less likely to win on the next round. So your winning or loss will now be vidy, where vy,
is your chosen stake, and d is the winning with a unit stake. But again, by fairness, you need to
decide about your stakes for the kth round before the kth round is played, i.e., only based on the
information .%;,_; that you have at time k£ — 1. This means that v must be predictable, and thus
the transformed game v * f is still a martingale, i.e., a fair game.

3.4. Burkholder’s inequality for martingale transforms. On a mathematical level, the fol-
lowing is a basic estimate about the behaviour of martingale transforms in LP spaces:

3.5. Theorem (Burkholder). Let (fi)r_, be an LP-martingale, where p € (1,00), and (vg)}_, @
bounded predictable sequence with |vg||eo < 1. Then

[0 * fally < Bpll fullp

for some finite constant (3, that depends only on p.

It is known that the best (smallest) constant in this inequality is 8, = max{p—1,1/(p—1)}. It
is quite remarkable that this constant is known, since it is usually very difficult to find the exact
constants in more complicated inequalities of Analysis. In fact, Burkholder’s inequality is one of
the most important tools for finding the optimal constants also for many other inequalities, by
showing that other operations can be interpreted as martingale transforms.

We will now give a proof of this inequality, which does not provide the optimal constant.

3.6. General observations. Burkholder’s inequality is actually a bound for the norm of some
linear operators acting on f, € LP(%,). Namely, observe that

(v =Y vrde =vofo+ > v(fr — feo1)
k=1

k=0 =

n
= VB[fal Zol + Y 0k(B[fal Zi] — Elful Fi-1]) = To(fn),
k=1
where it is easy to check that T, is linear. This places at our disposal some tools from the general
theory of linear operators on LP spaces:

Interpolation. The Marcinkiewicz interpolation theorem says (in particular, and even slightly
more) that if a linear operator T is bounded on LP° and on LP* for two exponents py < pi,
then it is also bounded on L? for all intermediate exponents p € (pg,p1)-
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Duality. It is not difficult to check that T;, is seld-adjoint in the sense that

/Tuf-gdu=/f~Tvgdu-

Thus, if Burkholder’s inequality holds in L?, then we also find for the dual exponent p’ that
17,1l =sup { [Tt g gl <1} =sup{ [ £ Tugdus all, <1}

< sup { I fllp I Togllp di glly < 1} < sup {If1lyByllglly die: ligly < 1} = Byl 1l
and thus 3, < ,/. By reversing the roles of p and p’ we see that also 3, < 3,, so in fact 3, = 3,.

3.7. Strategy for the proof. A combination of interpolation and duality shows that it is enough
to prove Burkholder’s inequality, for example, just for exponents of the form p = 2%, k =1,2,....
Indeed, interpolation shows that we then have the estimate for all p € [2,00), and duality shows
that we have it for all p € (1,2].

The case p = 2 (with 82 = 1) follows from simple orthogonality considerations, and is left as
an exercise. The other powers of 2 will be obtained by induction from the following:

3.8. Proposition. Suppose that Burkholder’s inequality holds for some p € (1,00). Then it also
holds for the exponent 2p.

We start the proof by observing that
lgllz, = 119%lp-

We apply this to g = (v * f),, and expand
n k—1

v*f (kadk> Zvidi+2§:z%d vkdk—Zvidi—i—QZ v * f)p—10kdg,

k=0 j=0
thus

N P2l < || Do viad| +2 Yo Hrcrvnd -
k=0 P k=0 P
We will next show that:

3.9. Lemma.

|30 fecsvnd]| < 85,00 % alplfalz
k=0

Proof. The idea is to apply the induction hypothesis, observing that ry := (v * f)g_1vk is again
predictable. The problem is that it is not necessarily bounded. To overcome this, we first write

Ot p = e g (0x Picr o= max (= £y
1=

(v iy

where uy, is both predictable and bounded by one, and (v * f);_; is increasing in k. We observe
that ((v*f)5_1dk)?_; is also a martingale difference sequence, so that we can apply the assumed
Burkholder inequality to the result that

H D (0 i 1okds
k=0 P

We then investigate the function on the right pointwise, using a partial summation argument:

(v flr—1vp =

fjwmldka.

= [ wws i <5,
k=0 P

n n n n—1
S (wk Diade = S 0x Pia (e — Fe) =S s Piafi— 3 (s Pt
k=0 k=0 k=0 k=-1

n—1
=i afat D (0x iy = @ Hi)fx = ©x f) fo,

k=0
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where the last term is actually zero by our convention about the martingale at —1. We estimate
the absolute values, recalling that (v*f)} is increasing in &, to find that

n n—1
| > Piade| < @ ilfal + Yo (@ i = @ DI
k=0 k=0

n—1

S Pnafn+ Y ((0x i =@ D) fn

k=0
S s flpafa+ W o fn < 20w f)ufn,

where we collapsed the telescopic summation. The LP norm of the right side is now easy to
estimate:

1200 % £)5Fnllp < 20" H)ill2pll 2 ll2p < 2029))2(1(v % Flnll2pll fallzp < 8lI(v % fnll2pll full2p,

where we used Doob’s inequality, and the fact that 2p > 2, hence (2p)’ < 2. O
We return to the estimation of ||(v * f)2]|,. So far we showed that
n
I D2l < || 3wk +2- 88,10 DulplFall
k=0

To bound the first term, we first recall that |vg| < 1, and then follow some of the earlier steps in
the opposite order, writing

n n n 9 n k—1 n
YDUTED S O SN NEED 9 SUNSSSCIE) py TN
k=0 k=0 k=0 k=0 j=0 k=0
Thus
| > widd| <zl +2| Y fra
k=0 P k=0 P
where || f2]|, = ||fn||%p The second term is exactly as in Lemma 3.9, but with v;, = 1. Thus an

application of that Lemma shows that

IS ferde|| < 3Bl
k=0 P

Altogether, we have proven that

1w Fallz, = 1w Hillp < I fall3p + 16851 fall3, + 168501 (v % Fnll2pll frll2p-

Let us divide both sides by || f,|3,, and denote

[[(w fnll2p
X i=——"
”thQP

This gives
X% <1+168, +1643,X,
or equivalently
(X - Sﬂp)Q =X?-2- 86X + (8617)2 <1+2-86, + (8611)2 =1+ Sﬁp)Q'

Thus X <1+ 163,, and hence B2, < 14 1603,. This completes the proof of Proposition 3.8.
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3.10. Exercises.

1. Give a short proof of Burkholder’s inequality for p = 2 (Hint: orthogonality of martingale
differences in L2.)

2. Prove the following Stein’s inequality: For any sequence of functions f € LP(.%), where
p € (1,00), we have

I(ELfr]FrDrezllr ey < Cpll(fr)rezllLe e

(Hint: for p > 2, use duality in LP/?2 and Doob’s inequality. For p < 2, use the previous
case and duality in LP(¢?).)
3. The square function of a martingale f with difference sequence (dy)}_, is defined by

Sy f = (édi)m.

Check that ||S,fll2 = || fnll2, and show that if ||f,]l, < ¢,||Snfll, for some p € (1, 00),
then we have both inequalities

1
7||fn||2p < ||San2p < C2p||an2p’
C2p

(Hint: Similar ideas as in Proposition 3.8; write f2 — (S, f)? as a sum of martingale
differences to prove that || f2 — (Snf)2llp, < Cpll full2pllSn fll2p-)
4. Complete the proof that

1
(3.11) —falls < 1Suflly < epll falls
P

for all p € (1,00) by following these hints: From Exercise 3, you get that this double
estimate holds for all p = 2", n = 1,2,.... Then, show that if the left inequality holds
for some p, then the right inequality holds for p’, and the other way round. (Here you
might need Stein’s inequality.) Thus you also obtain the double estimate for all p such
that p’ = 2" n = 1,2,.... In particular, you now have that f, — S, f is bounded (i.e.,
1Snfllp < cpllfullp) for all p with max{p,p'} = 2", n =1,2,.... Observe that f, — S, f
is a quasi-linear operator: S,(f + ¢g) < S,f + Sng for any martingales f,g. Thus the
Marcinkiewicz interpolation theorem shows that the LP-boundedness of S,, (i.e., the right
inequality ||S, fllp < ¢pll fnllp) extends to all intermediate values p € (1,00). (You can take
this interpolation argument for granted as a black box.) Finally, from the duality already
mentioned, you get that also the left estimate || f,||, < ¢n||Snf]|p holds for all p € (1, c0).
5. Derive Burkholder’s inequality from the double inequality (3.11).

3.12. References. Burkholder’s inequality was originally proved in [1]. (It is only contained as
part of the proof of Theorem 9 in [1], not as a separate result!) The optimal constant was obtained
in [2]. A more detailed explanation of how Burkholder actually found this amazing result is given
in his summer school lectures [3].

4. UP-CROSSINGS AND CONVERGENCE OF MARTINGALES

We have seen that if (f,,)nez is the martingale generated by a function f € LP(%), p € [1,00),
then f, — f both in LP and almost everywhere. We now want to look at the following related
questions:

e What can be said about the convergence of f,, as n — oo if we are only given a martingale
(fn)nez, not necessarily generated by a function as above?

e What about the convergence of f,, as n — —o0?

e Assuming that we have positive answers to the first two questions, with limits f,, and
f— o0, what more can be said about the mode of convergence of the series

S o W O SN SEAA
k=—o0 m——o00 k=m-+1 m——o00o
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In the last point, we have in mind the so-called unconditional convergence in the space LP. This
is defined as follows in a general Banach space (a complete normed space) X.

4.2. Unconditional convergence. A series Zzil xk, with x € X, is said to converge to z € X
if lim,,— o ZZ:1 xr = x. It is said to converge unconditionally if

Z Lo (k)
k=1

converges for every permutation (bijection) o of the positive integers Z .
We will discuss the unconditional convergence of martingale differences at the end of the chapter.

4.3. Up-crossings of a martingale. This is our main tool for the analysis of martingale con-
vergence. Fix some interval (a,b) and a martingale (f,,)nez. By an up-crossing we mean a pair
of indices (o, 7) with such that f, < a < b < f;, and 7 > ¢ is the minimal number with this

property.
Let
U, n(w) 1= number of up-crossings of (fi(w))i—,-
To be more formal, let og := 79 := m, and then
oj =min{k > 7;_1 : fr < a}, 7; = min{k > o; : fi > b}, j>1,

and
U, = max{J : 7y < n}.
Note that both ¢;,7; : @ — {m,m +1,...,00} are stopping times. (Recall that o : Q@ —
Z U{—00,+00} is a stopping time if {p < k} € F, for all k € Z.) Indeed, if we already know this
for 7;_1, we observe that

< — [ < i )
{oj<k}={r1 < kai:TjIEl%ligkfz <a}

k
= J{ma=nn {i:]{gli%k fi <a},

h=m

which belongs to #, since {r;_1 = h} € #, C %, and each f; above belongs to L°(.%;) C
L°(Z;). Hence also o; is a stopping time. From this we similarly obtain that 7; is a stopping
time, and we can proceed by induction.

4.4. A martingale transform that counts the up-crossings. We now define a martingale
transform of (fx)kez in such a way that we only want to consider those differences dj, that take
place in an up-crossing, i.e., 0; < k < 7; for some j. Namely, we set

oo
Vg = Z Lio;<k<r;}s

j=1
which is predictable, since

{O’j <k§7’j}:{0'jSk‘—l}m{Tj>k‘—l}:{0’j Sk—l}ﬂ{TjSk—l}CEng_l
by the fact that o; and 7; are stoppping times, and also vi(w) € {0,1}, since at most one of the

conditions o;(w) < k < 7;(w) holds at any given point w € .
Now consider the transform of f by v given by

Gn = (V* f)n = Z Vg dy, di = fr — fr—1-

k=m+1
From the definition of vy, we obtain

= ! fn_fO'J+15 ifn>0’J+1>
gn:Z Z dk:Z(ij_fO'j)—"_ 0,

, , els
J=1 k:0j<k<min(7;,n) j=1 se,

where J = Uy, is the number of up-crossings between m and n.
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By definition, we have f., > b and f,, < a; hence

J J
Z(f”"j _f‘TJ Z b_a’ _a):(b_a)um,n~
j=1 =1

Also, it is clear that f, — f,,,, > —|fa| — a, and thus altogether we checked that
(4.5) gn 2 (b= a)umn —[fnl —lal.

4.6. Integrating the up-crossings, n — oco. Next, we want to integrate the pointwise bound
(4.5) over suitable sets A. For this purpose, we impose the following integrability condition: The
ideal

(Fr)nswzm = {A € Fht sup [1afilh < o}

should contain a countable cover. For example, this holds if sup,cy || fx|l, < oo for some p € [1, oo,
since then ||[1afeli < u(A)Y?|| fellp, and thus (F2) s om = F0, which contains a countable
cover by o-finiteness.

Note that each term of

n

gn=">_ wlfx— fr-1)

k=m+1

is integrable over any A € (Z2)f, .k>m (since the functions fj are, and [[vg|lo < 1), and we get

/gnd,u— Z /’dekd,u

k=m+1
Z / 'dek|</k 1 du— Z / v E dk|</k 1} dp =0,
k=m+1 k=m+1 A

where we used the facts that A € %, C Fr_1, vp € L°(Fr_1), and E[dg|.F,_1] = 0 by the
martingale difference property. So integrating (4.5) over A € () f,:k>m, We find that

(b—a>/Aum,ndus/A<|fn|+|a\>du.

We now let n — oco. Since Uy, is increasing in n, the monotone convergence theorem shows
that U oo 1= limy, oo U, satisfies

1
[tz g s [l +lahdn <o YAE (F)pazn

But this means that u,, .. < 0o almost everywhere on A € (J ) frik>m, and since we can cover
Q by countably many such sets, we find that u,, . < co almost everywhere on Q.

4.7. Pointwise convergence of martingales as n — oo. Let (fx)r>m be a martingale for
which (%) #,.:k>m defined above contains a countable cover. We claim that in this case

e f, converges to a limit (a priori, maybe +o00) almost everywhere as n — oo, and
e this limit is actually finite (i.e., a real number) almost everywhere.

The key observation is that the upper and lower limits lim sup,,_, . f» and liminf,, . f, (allowing
the values +00) always exist, and the limit exists if and only if the upper and lower limits are
equal. If they are not equal, then we can always squeeze to rational numbers a < b in between.
Thus,

{ lim f, does not exist} = {liminf f,, < limsup f,} = U {hm 1nf fn <a<b<limsup f,}.

a,beQ e
a<b

But, if limsup,,_, ., fn > b, it means that there are infinitely many £ > m such that fi > b,
and similarly liminf, .. f, < a means that fir < a for infinitely many k& > m. So, if both
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conditions hold, it means that there are infinitely many up-crossings of (a,b) between m and oo,
i.e., Um, 0o = 00. But this can only happen in a set of measure zero, and therefore

wu( lim f,, does not exist) < Z p(liminf f,, < a < b < limsup f,) < Z 0=0.
n—oo o be0 n—oo n—00 obeQ

a<b a<b

Thus there exists a limit function fo, := lim, . f,. It remains to check that |fo| < co almost
everywhere. To this end, let A € (%) f,:6>m and apply Fatou’s lemma to the result that

[l = [t gl d < timint [ gl di < sup [ 1a]dn < o,
A A N0 n—oo 4 n>mJA

thus |fs| < oo almost everywhere on A, and then by the countable covering property, almost
everywhere on 2.
If sup,,cz || fullp < 00, where p € [1,00], a similar Fatou-argument shows that

[foollp < sup || fullp-
neZ

For more trivial reasons, the last estimate is also true for p = oco.

4.8. Recovering f, from f.,. Our next goal is to show that, under some conditions, the original
martingale (fx)k>m can be recovered from fo, := lim, . f, by

(4.9) frn = E[fso| Fn).
For this purpose, we strengthen the earlier integrability condition to the requirement that
(Zo) - = 1A € Zp : [1af*|lh < oo}

contain a countable cover. Since |fx| < f* for each k, it is clear that (Z2) s C (F2) i k>m,
and hence this condition is stronger than the one imposed above to guarantee the existence of the
limit foo.

Now consider some n > m, and observe that (Z2) - D (Z9,) s+ also contains a countable cover.
For any A € (#9) f+, we can then apply dominated convergence with the dominating function f*

to deduce that
/fooduzj lim i dy = hm/fkduz hm/fkdu,
A Ak—>oo k—o0 A kk;)?zo A
and here
/fkdu:/E[kadu:/ fodi VR
A A A
thus
[ dwn= [ fan vae @,
A A

Since (#2) ¢~ is an ideal containing a countable cover, we deduce from the definition of the con-
ditional expectation that (4.9).

4.10. Example. We show by example that the weaker condition that (Z2)¢, .x>m contain a
countable cover, which guarantees the existence of f,,, is not sufficient for (4.9). Indeed, let
Q =[0,1) with Lebesgue measure, .7, := o({27%[j — 1,5) : j = 1,...,2%}), and f;, := 2¥ . Lio,2-#)
for k > 0. It is easy to check that this is a martingale, and ||fx|l1 = 1 for all £ € N, so that
condition for the existence of f, is clearly satisfied. It is easy to see directly that f,(w) — 0
pointwise almost everywhere (indeed, in all other points except w = 0), so that foo = 0. But
clearly f, # E[fe| 7] = 0.

Thus (#{)s+ cannot contain a countable cover, and this is also easy to see directly, since
F9 =12,[0,1)}, and f*(w) ~ 1/w, which is not integrable over [0,1). So in fact (F)s = {@},
which clearly does not contain any cover of [0,1).
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4.11. Convergence of f, to f in LP. Suppose that sup,,cz || fr||p < 00, where p € (1,00]. Then
by Doob’s inequality, we have || f*||, < oo, so that (Z#2)s = .Z2 contains a countable cover by
o-finiteness for every m € Z. Thus the pointwise limit

foo = lim f, exists, and f, = E[foo|Fn] Vn € Z.

Moreover, we have
[foollp < sup || fullp = sup [Elfoc| Fnllp < [[foollp,
n n

so in fact

Hfoo”p = sup an”l)
n

This shows that all the information about the martingale f, is actually captured by the limit
function fo, and the filtration (%, )ncz.

If p € (1,00), we can further apply the dominated convergence theorem with dominating func-
tion 2f* € LP to see that

n—oo

lim |fn_foo|pd/14_)07
Q
ie., fn — foo in the norm of LP.

4.12. Pointwise convergence of martingales as m — —oco. Our next aim is to investigate
the limit behaviour of f,,, as m — —oo. Once again, this is done by integrating the pointwise
up-crossing inequality (4.5) over appropriate sets A. Let

As an intersection of o-algebras, this is automatically a o-algebra. We make the assumption that

(F2)p, ={A € F0t [Lafalli < oo}

— 00

contain a countable cover. Note that this collection is contained in .Z#°_, so this assumption

requires in particular that .#°__ be o-finite. Let us stress that this is a very non-trivial assumption;
we will return to this point later. Also note that for k <n and A € #_,,, we have

Lafelly = [LAE[fn] ]l = [E[Laful Zr]ll < [1afallr,

so that in fact (F° ), C(FL )y, for all k <n.
As before, this guarantee that everything in (4.5) is integrable over every A € (F°_ )y, , and
we deduce that

0= [ gndn= t=a) [ wndi= [ (1fal+lal)

and so
1
/ U—oo,n At == / lim tp,,dy = lim Umn A < —— [ (|fn] + |a]) dp < o0.
A AT m—eo S A b—aJa

Thus ¥—o,, < 00 almost everywhere on each A, and hence on Q.
By a similar argument as for n — oo, the finiteness of the up-crossings implies the existence of
a pointwise limit, i.e.,

froo i= i lim fj exists pointwise almost everywhere.
— — 00

Recall that fi, € LO(F) C LY(%,,) for k < m, and thus

fooo:= lim fr= lim f, € L%%n) VYm<n,
k——o0 k——o0

kE<m
thus in fact f_o € LN Zy) = LY Z_).

m<n
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4.13. Formula for f_.,. We keep working under the same assumptions as in the previous section.
Thus the pointwise limit f_., exists. We will show that it is in fact given by the formula

fooo = Elfm|-Z -] Ym < n.

0

This formula is an immediate consequence of the following lemma, since then for any A € (F#2 )y, ,

we have

/f_ = Jim /fkdu— hm/ ol = Jim [ = /fmdu,

which proves the formula by the definition of conditional expectation.

4.14. Lemma. For all A € (F°_)s, , we have
lim [La(f — )l = 0.
Proof. We consider the two new martingales (gr)k<n and (hg)r<n given by

gr = E(fn - 15, <r}|Fr), hi == E(fn - 145, 1> R} Tk)-

Note that |gn|, || < |fnl, so that (F2)s, C (F2)g, N(FO )n,. By the previous section, the
pointwise limits

Jeoo i= klim Gk h_o = lim hy exist almost everywhere.
——00

k——o0

Since fr = gr + hi, we also have f_ o = g_oo + h_oo. Also, observe that

lgklloe = EC(fr - i, <r} TR0 < 1fn - g <rylloe < R,

so that g, = supy<,, [gx| < R, and thus each 14gy, k < n, is dominated by the integrable function
1ag* <1a-R,if u(A) < co. Thus the dominated convergence theorem implies that

i [La(g — g-) 0.
On the other hand, we have

[Tabills = EQa - fr 1gpsrylZo)ll < 1fn - Langpsrll, Ve <n,

and by Fatou’s lemma also

HlAh”l :/ hm \hk\d,u S hmlnf/ |hk|d,u S an . 1Aﬂ{|f,,L\>R}||1~
Ak—H)O k—oo A

Combining everything, we obtain

limsup [[1a(fk — f=oo)lln = limsup [[1a(gk + bk — 9—c — h—oo) 1

k——o0 k——o0

< limsup [La(gs — g—oc) 1 + limsup [ La (s — hco)]s

k——o0

SO0+2-Ifn - Langt.>rill

which holds for any R > 0, so also in the limit as R — oo. Next we observe that f,,-1ang s, >R} IS
dominated by the integrable function f, - 14, and converges pointwise to zero almost everywhere,
i.e., in all points where |f,| < co. Thus

limsup [[1a(fx — f-oo)ll1 < Aim 2 [fn - Langfa>mylli = 0.

k——o0
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4.15. Convergence of f,, to f_, in LP. We now assume that .%_., is o-finite and that
sup,ez | fall, < oo with p € [1,00). Thus (F°.)s = F°. contains a countable cover for
every n, and the previous results apply, i.e.,
lim fm:ffoo:E[fn|ﬁfoo] Vn € Z.

o0

m——

oo

If p € (1,00), then all f,, are dominated by f* € LP, and we obtain from the dominated conver-
gence theorem that lim,, o || frn — foccllp =0, L€., fin = f-oo in the norm of LP.

This norm convergence is also true in L', but needs a somewhat more complicated proof, using
Lemma 4.14: Let A; C Ay C ... besetsin 35900 such that U]Oil Aj = Q; they exist by o-finiteness.
By Lemma 4.14, we have

kEIEIOOH]-Aj(fk_ffoo)”l:O VjELys.

Thus
im s i — f-oell < limmsup 14, (e = f-oc)ls + Timsup L i — F-o0)l

= 0+ limsup [E[Lcfu | Zilll + IE{Lag ful Z-ocl 1 < 2 | Las Full.

which holds for every j € Z,, and hence also in the limit as j — co. But each 1 4c f;, is dominated
J

by the integrable function f,,, and these functions converge pointwise to zero; hence by dominated
convergence

lim sup | fi = f-cclls <2+ lim [[Lyc fully = 0.

——00

4.16. The case of a “poor” .%_,,. We mentioned above that the assumption that #_., be
o-finite is quite non-trivial. Indeed, in our basic example of the dyadic filtration
Fi=0({27j.j+ 1)1 j € Z})
of R, it is not difficult to check that
F oo = ﬂ Fr, ={9,R, (-0, 0),[0,00)},
keZ

and hence .ZY_ = {@} clearly does not contain any cover of R.
So in fact we have u(A) € {0,00} for all A € F_,,. We already considered this situation in
Section 2.15, and found that

lim fk =0
k——oo
k<m
both pointwise and in LP, provided that (fi)k<m is a martingale with || f,,,||, < oo.
We summarize the results of this section so far:
4.17. Theorem (Pointwise convergence of martingales, n — 00). Suppose that (fn)n>m 1S @
martingale adapted to (Fn)n>m. The following assertions hold:

o If (F2) fok>m contains a countable cover, then

foo = lim f,, exists pointwise almost everywhere.
n—oo

o If (FL) s contains a countable cover, then
frn = E[foc|Fnl Vn > m.
4.18. Theorem (Pointwise convergence of martingales, m — —o0). Suppose that (fm)m<n s @

martingale adapted to (Fm)m<n- If (F° )y, contains a countable cover, then

feoo = nEIPoo fn exists pointwise a.e., and f_oo = E[fn|F— o] Vm < n.

4.19. Theorem (Convergence of LP martingales). Suppose that (fn)nez is a martingale with
sup,cz || frllp < 0o, where p € (1,00). Then the following assertions hold:
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o foo =1lim, . fn exists pointwise a.e. and in LP, and we have

fn=Elfec|Fn] VneZ, Hfoonp:Sléngan'

o f o = lim, . fn exists pointwise a.e. and in LP, provided that one of the following
additional conditions holds:
— F_ 18 o-finite, and in this case [_o = E[fn|F_oc] for alln € Z, or
— F_o contains only sets of measure 0 or 0o, and in this case f_o, = 0.

In fact, it can be shown that Q always splits as Q = Q, U Q,, where Q,,Q € F_, are
disjoint, and .Z_ o, N, is o-finite on Q,, and .F_,, N Q¢ only contains sets of measure 0 or co.
In this way, the above mentioned two cases together actually cover all situations.

4.20. Unconditional convergence. In the remainder of this chapter, we consider the uncondi-
tional convergence of the series

doodk  de=fu— freoa,

k=—oc0

where (fr)rez is a martingale with sup, ¢z || fnll, < oo for some p € (1,00). So in fact f, =
E[fso|-#x] for a limit function fo, € LP. We first prove two abstract results in an arbitrary Banach
space X. (In our martingale application, we take X = LP.)

4.21. Proposition. Let Y ;- | x) be a series in a Banach space. If the series converges uncondi-
tionally, then the value is independent of the order of summation, i.e.,

S
Z xo.(k) =T
k=1

for a fixzed x € X and every permutation o of Z .
We first observe:
4.22. Lemma. If o is any permutation of Z,., then o(k) — oo as k — oo.

Proof of the Lemma. Given any n, we need to find an m such that o(k) > n for all k > m. Since

o is surjective, we can find some numbers ki, ..., k, with o(k;) = ¢ for each i = 1,...,n. Let
m = max{ky,...,k,}, and consider any k > m, so in particular k& ¢ {k1,...,k,}. Since o is
injective, we have o(k) ¢ {o(k1),...,0(kn)} = {1,...,n}, and thus o(k) > n. O

Proof of Proposition 4.21. We argue by contradiction. Suppose that there are two permuations

o, T with
Z%(k) =rFy= Z%(k)
k=1 k=1

We construct a third permutation p so that Zgozl T (k) does not converge.
Pick a sequence € | 0. We will inductively choose natural numbers

O<mi<ni<mo<ng<....

Suppose that we have already chosen mq,n1,...,m;,n;. (This is trivial if j = 0; then we haven’t
chosen anything yet.) Choose m;11 > n; so large that {r(1),...,7(n;)} C {o(1),...,0(m;11)}
(this condition is empty if j = 0; otherwise, it is possible since o is surjective), and

mj41

H Z To(k) — JJH < €541
k=1 X

Next we pick njy1 so large that {o(1),...,0(m;41)} C {7(1),...,7(nj+1)}, and
nj+1

Z Tr(k) — QTH < €j41-
k=1 X
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So now we have
{r(1),... 7T(nj)} C {o(1),... 7J(mj+1)} c{r(1),..., T(nj+1)} — Ly as j — 00,

since n;41 — 00, and then also 7(n;+1) — 0o, and 7 is surjective.
We can inductively choose the values of the permuation p so that

{p(D);- s p(my)} ={o(1),...,o(my)} S {p(1),....p(n;)} = {T(1), ..., 7(ny)} Vj€Zy.

But then some of the partial sums of Y 7, Tp(k), Namely, Soed, Ty = S, To(k), converge to
x, and some others, namely, ZZ’Zl Tp(k)y = ZZJ:l Tr(k), converge to y. By the uniqueness of the
limit, the full series cannot converge. O

4.23. Proposition (Characterization of unconditionality). Let Y ;- | ) be a series in a Banach
space. Then the following assertions are equivalent:

e > 7, x) converges unconditionally.
e > 17, Orxy converges for every choice of &) € {0,1}.

Proof. We only prove “<”, and we argue by contradiction. Suppose that there is a permutation
o so that Z;’;l T, () does not converge (and hence, is not Cauchy). Then we prove that there is
a choice of 6, € {0,1} so that > p- ; d,x) does not converge either.

Fix an € > 0 so that 220:1 Ty (k) fails the Cauchy criterion with €, namely, there exist arbitrarily
large m < n such that || Y ) zomllx > €

Again, we first find a sequence of numbers m; < n; < ms < ng < .... Suppose that we
have already chosen mq,n4,...,m;,n;. Now we choose the numbers m ;1 < n;4; so large that
o(k) > max{o(i) : 1 <i<n;} for all k > mj4q, and

nj+1

| 3 ol >

k=mji1

Next, we define

5 1, ifi=o(k) for some k € [m;,n;] and j € Z,
e 0, else. ’

Note that since the intervals [m;, n;] are pairwise disjoint and o is injective, the first condition can
hold for at most one j € Z;. We now show that >~ §;z; is not Cauchy, hence not convergent.
Indeed, consider the partial sum

max{o(k):k€[mj,n;]} n;
§ii = > To(k);
i=min{o(k):k€[m;,n;]} k=m;

to verify the identity observe the following: §; = 1 if and only if ¢ = o(k) for some k € [myg, ngl,
and some ¢ € Z,. If £ < j, and h < ny < nj_q, then o(h) < o(k) for all k > m;, so this case does
not appear. If £ > j, and h > my > mjy1, then o(h) > o(k) for all k& < n;, so this case also does
not appear. This only leaves the possibility that ¢ = j, and then the identity is clear.

But the sums on the right of the above identity are at least € in norm; hence so are the sums
on the left. Since these are partial sums of Y.~ &;z;, the series cannot converge. O

Now we are ready for:

4.24. Theorem (Unconditional convergence of LP martingales). Let dy = fr— fr—1, where (fn)nez
is a martingale with sup, ¢z || fnllp < 0o. Then the series

>
k=—o

converges unconditionally in LP.
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Proof. We already know that the series converges, hence it satisfies the Cauchy criterion
n
H Z dkH — 0 as m,n — too,
k=m Ly

where we mean that both m,n — oo, or both m,n — —oc.
Let then d;, € {0,1} be some numbers. In particular, we can view them as predictable (constant)
functions on 2. Then Burkholder’s inequality shows that

|$5 s, < S, 0w mn - s

so also the series Y7~ ydy satisfies the Cauchy criterion, and hence is convergent. Since this
holds for every choice of &, € {0,1}, we see that > - __dj is unconditionally convergent. O

Thanks to this theorem, we are justified to write
> de
keZ

in place of Z:O:—oo dy; this notation emphasizes the fact that we sum over all values k € Z, but
the order of summation is not important.

4.25. Exercises.
1. Prove the other direction of Proposition 4.23.
2. Use orthogonality considerations to give another (easier) proof of the following martingale
convergence results in L?: Suppose that (f,,)nez is a martingale with sup,,cz || fnll2 < co.
Then the limits
fooo= lim fp, Joo = lim f,
n——oo n—oo

exist in the sense of L? convergence. [Hint: Check first that
oo
> N5 < sup | fall3
k=—o0 n€z

and apply the Cauchy criterion. Use orthogonality!]

4.26. References. We have partly followed the presentation of Williams [16] in proving the mar-
tingale convergence results with the help of the up-crossing technique.

5. PETERMICHL’S DYADIC SHIFT AND THE HILBERT TRANSFORM

5.1. Dyadic systems of intervals. We call 2 a dyadic system (of intervals) if 7 = U,z %j,
where each Z; is a partition of R consisting of intervals of the form [,z +277), and each interval
I € 9 is a union of two intervals I_ and I (its left and right halves) from %; 1. Let us derive a
representation for arbitrary dyadic systems in terms of the standard dyadic system 2° = | ez 9]0 ,
where 29 = {27/[k,k + 1) : k € Z}. (This already appeared in Exercise 2.17(4).)

It is easy to see that &; has to be of the form 9]0 + x; for some z; € R. If one adds an integer
multiple of 277 to x;, the collection @jo—l—mj does not change, so one can demand that z; € [0, 2779).
Then z; is actually the unique end-point of intervals in 2;, which falls on the interval [0,277).
Since this is also an end-point of the intervals in Z;1, there must hold z; — z;11 € {0,27771}.
Let us write 841 := 27T (z; — xj41) € {0,1} so that z; =2777!3; + z,41, and by iteration

xj = 22_2@‘7 B = (B)icz € {0,1}"
i>j
Hence an arbitrary dyadic system is of the form 27, where Qf = .@JQ + Zi>j 278,
In the sequel we will also need dilated dyadic systems r2” := {rI : I € 99}, where rI = [ra,rb)

if I = [a,b). Note that 2/ 2% = 27" for another 3’ € {0,1}%, so only the dilation factors r € [1,2)
will be relevant.
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5.2. Dyadic o-algebras and conditional expectations. Let ﬁjﬁ = 0(@?), and then rﬁjﬁ =
a(r@jﬁ). Let us consider 8 € {0,1}* and r € [1,2) fixed for the moment, and write simply

Fj = rﬂf and 9; = r@jﬁ. Then (%;), ez is a filtration (Exercise 2.17(4)). Moreover,

U(Uy‘j) = BR), VFe()ZF:IF| {000},
JEZ JEZ
where #(R) stands for the Borel o-algebra of R, and |F| for the Lebesgue measure of F' € Z(R).
For the first property one checks that every open set & C R is a (necessarily countable) union of
dyadic intervals. For the second, note that if F' € .%; \ {@}, then |F| > 7277, and this tends to
+o00 as j — —oo.

5.3. Haar functions. Let LP(R) := LP(#A(R), dz). By Theorem 2.16, it follows that every
f € LP(R) has the following series representation which converges both pointwise and in the LP
norm:

f= .Z (E[f|-F;41] — E[f|.%])
_ Y . 1 b
_]_Zm% Tl Ry R F ALY
2 2 1
_j_zoogg;j <II|I|/Ifdx+11+|I| I+fda: (17, + 1, )III{ fdx+/lifdx})

D (1,7{%/171%1:3—% I+fdx}+11+{|}|/l+fdx—|}|/lfdx})

j=—o0 I€Y;
-y ¥ (117—11+)|71|/(117—1I+)fdx— Zh,/h,fdx
j=—o0 I€P; j=—o0 I€D;

where the Haar function hy associated to the interval I is defined by
=72 (1 - 1p).
Note that

h:=hio,1) = Ljo,/2) = 1/2,1)-

o) = 17202,

1]
Let us write (hy, f) := [ hyf dz. By Burkholder’s inequality with the random signs (Section ?7?),
it follows that

(%) B fllp < (/IE‘ Z £j Z hi(z)(hr, f ’ dm>1/” < BIfl.

—oo 1€,

5.4. Petermichl’s dyadic shift. The dyadic shift operator III = 17" associated to the dyadic
system 2 = r2” is defined as a modification of the Haar expansion f =Y Zle% hilhr, f):

= Z Z Hi(hy, f), Hp=2""(h;_ —hy,) = |I|_1/2(11,,u1+4r — 17, ur,_),

j=—0c0 I€Z;
where I__ := (I_)_ and so on. (The symbol III is the Cyrillic letter ‘S’ as a reference to the word
‘shift’, which starts with this sound.)

Now there is the question of convergence of the above series and the boundedness of the shift
operator. For I € 2, let I* be the unique interval I* € Z such that I* D I and |I*| = 2|I|. Let
ay:=+1if I =1I* and a7 := —1if I = I']. Then observe that

n

Z Z 27 12(hy —hy ) (hy, f) = Z Z ;27 2 hy (b, f).

j=m I€P; J=m JEDj41
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By (x) of Section 5.3 it follows that

n n 1
| S monn| <o( [EXe X arPu@ing.nl a)”
j=mI1€9; b R Vj=m  Je€Pin
Now comes the core trick of the argument! For a fixed z, there is only one non-zero term in the sum
J € D41 for each j — indeed, the one with J > x. When this term &; := a2 Y 2hy(x)(hye, f) is
multiplied by the random sign €;, it does not matter if the &; itself is positive or negative; in any
case €;¢; is a random variable which is equal to —&; with probability % and +¢; with probability
%, and it is independent of the other ¢;§; for ¢ # j. Hence the resulting random variable would

have the same distribution if hy(z) were replaced by |hy(x)| = |J|~*/?1;(z). Thus

(/RE‘ zn: & Y, a2 Phy(@) by, f) pdl‘)l/p

j=m JEDj11

= (/R]E igj 3 a,](2\J|)_1/21J(9c)<hJ*7f)‘pdx>1/p

j=m JE@]'+1

= (LE X D e - @) ) “ar) "
= (/]E Zn:Ej Z h1($)<h17f>’pdx>l/p < 5H z": Z h1<h17f>H :
R j=m  Ieg; j=m I€9; P

Combining everything

[ monn| <@ X wt ) -
j=m I1€P; P j=m I1€2; P
The right side tends to zero as m,n — oo or m,n — —oo; hence so does the left side, and thus
by Cauchy’s criterion the series Zjo:_oo ZIE% Hi(hy, f) converges in LP(R), and the limit IITf
satisfies

sl = || S 5 s < 051

n—-+oo
m——oco J=mIeP;

5.5. The Hilbert transform. The Hilbert transform is formally the singular integral
1 (>1
“H — - _ du.”
fla) = /_OO yf(fﬂ y)dy,

but to make precise sense of the right side one needs to be a bit more careful. Hence one defines
the truncated Hilbert transforms
1 1
Honf@) = [ Sy
T Je<|yl<R Y
and, for f € LP(R),
Hf:= lim H.grf
e—0
R—o0
if the limits exists in L?(R).
Simple examples show that, for a general f € LP(R), this can only happen in the range p €
(1,00). In fact, for f = 1(4), there holds

x—a
x—0 ‘

pointwise. In the neighbourhood of the points a, b, the logarithmic singularity belongs to LP for
all p < 0o, but of course not to L>*. As z — oo,

1—a/x
1-b/x

H. r1(qp)(7) — log ‘

a b b—a 1
| =1og(1 = 2) ~log(1 — 2) = ===+ O(;),

rT—a
o8 =5 = 1os|
0g r—b 0g
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which is in L? for all p > 1 but not in L'.

5.6. Invariance considerations. For r € (0,00), let 4, denote the dilation of a function by r,
dr-f(z) = f(rz). For h € R, let 75, f(x) := f(x + h) be the translation by h. Both these are clearly
bounded operators on all LP(R) spaces, p € [1, o0].

Simple changes of variables in the defining formula show that

He ROrf = 0pHer e f, He pmnf =ThHe RS,
and hence, if H f exists, so do Hd,f and H7y, f, and
Ho.f=0,Hf, Hrf =mHf.

These properties are referred to as the invariance of H under dilations and translations.

The aim is to prove the existence of H f for all f € LP(R) by relating H to the dyadic shift
operators. The basic obstacle is the fact that the III operators are neither translation nor dilation
invariant: If f = hy for a I € 2, then IIf = Hy, but if f = hy, where J ¢ 2 is a slightly
translated or dilated version of I, then IIIf has a much more complicated expression.

The idea to overcome this problem is to average over the shifts II7" associated to all translated
and dilated dyadic systems r 2”7

5.7. The average dyadic shift operator. Let the space {0, 1}? be equipped with the probability
measure 4 such that the coordinates 3; are independent and have probability (58 = 0) = p(8 =
1) =1/2. On [1,2), the measure dr/r will be used; this is the restiction on the mentioned interval
of the invariant measure of the multiplicative group (R4, ).

We would like to define the average dyadic shift as the following integral:

@ s = [ [ e -3 A O SR C IO

Iergf

but this needs first some justification.
Let M#7" denote Doob’s maximal operator related to the filtration (o(r.@f))jez. Then observe
that

m’y,  fa Z > Hi(x)(hy, f) = B[O flo(rPny2)|(x) — BT flo(rD_m1)](x)

== 1erg?

is pointwise dominated by 2M7" f(z) and converges a.e. to III?" f(z) as m,n — oo. It is easy to
see that the above finite sums are measurable with respect to the triplet (z, 3,7), and hence so is
the pointwise limit III°" f(z).

To see that (8,7) — III?" f(x) is integrable for a.e. € R, and to justify the equality in (%)
above, note that by Jensen’s inequality, Doob’s inequality, and the uniform boundedness of the
operators I1I°7, there holds

/ / dr /{Ol}Z (B)MPT {1 f}( >}

<[ S ) [ e ) e < [ S OIS < ISl

In particular, this shows that

[ T, O ) < oo

f(z) is dominated by the integrable function M {III*" f}(z) and

converges to 117" f (z) as m,n — oo; hence e f (z) is integrable and dominated convergence
proves that

[ e = [ e e
{O 1}Z m,n—0o0 0 1}Z

for a.e. z € R. So III°"

—m,n
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which, unravelling the definition of H_I_m s 1S the same as (). Finally, since the right side above

is dominated by [ dr/r [ du(S8 Mﬁ’"{mﬂ’ f} € LP(R), it follows from another application of
dominated convergence that the series in (*) also converges in the LP norm.
From the first form in (x) it follows that

dr
< [ [ oo,
d
< [ Pl =2 - 1P

5.8. Evaluation of the integral. Next, we would like to obtain a new expression for (III)f in
order to relate it to the Hilbert transform. Observe that

T@f = 7“2_j(@8 + Z 2_iﬁj+i).
i=1
When each of the numbers §; is independently chosen from {0,1}, both values having equal
probability, the binary expansion Y ;> 273, ; is uniformly distributed over [0,1), and hence

1
/{0,1}2 du(B) Z Hy(z)(hr, f) =/ du Z Hi(z){hy, f)

Ier9? O rer2i(99+u)

1
:/ du " Hyo-s(jo.1) 4 k4a) (@) Bz ((0,1)+ k) f)

kEZ
/ Hyp-i (10,1)40) () (hra=i ([0,1) 40)5 [
where the second step just used the fact that 2§ = {[0,1) + k : k € Z}, and in the last one

the order of summation and integration was first exchanged (this is easy to justify thanks to the
support properties) and the new variable v := k + u introduced.
Making the further change of variables t := 2777, it follows that

o0 d o0
) = [~ [ Hioays @ oy £ do

where [ is actually the indefinite integral limy, o f;:, Recall that (o, 1)+0) (y) =t~/ 2h(y/t—
v) with h = hyg 1), and similarly for Hy(g,1)4.). For a fixed ¢, the integrand above is hence

/ t1/2H( )/Z 1/2h( )f(y)dydv
/wl/ (2~ o)n(Y—v) dvrt)ay

The inner integral is most easily evaluated by recognizing it as the integral of the function
(&,n) — H(&)h(n) along the straight line containing the point (z/¢,y/t) and having slope 1. The
result depends only on u := x/t — y/t and is the piecewise linear function k(u) of this variable,

which takes the values 0, — 1 ,0, i,O 3 ,0, 411,0 at the points —1, f%, ceey 4, 1, interpolates linearly
between them, and Vanishes outside of (—1,1). So
f / kt * f* = hm / kt * f
Raoo
where the limit exists in LP(R), and the notations k¢(x) := t~1k(t~'x) and

/ k(x—vy dy—/ k(y —y)dy

were used. These notation will also be employed in the sequel. k x f is called the convolution of
k and f.
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5.9. The appearance of the Hilbert transform. Let us evaluate the integral

R z/e x
/ e )it / k@/t)%:é/ k(u)du:é[K(x/e)—K(x/R)], K(z) ::/0 k() du.

/R

From the fact that k is odd (k(—z) = —k(z)) it follows that K is even (K(—x) = K(z)). Since
k is supported on [—1, 1], its integral K is a constant on the complement, and in fact K(x) = —1/8
for |z| > 1. Write ¢(z) := 27K (2)1j_1 1j(2), which is again an odd function. Then

%K(g)—ii@f( )i 111(96)—;1[ 1 () = ¢(a) - 11\T|>ev

hence
LK (/o) ~ K(x/R)] = 6.(2) ~ on(x) ~ g- i

and finally
R
dt s
| b £ =6t~ onxf - GHenf.

As e — 0, R — oo this sum converges to a limit in LP(R), in fact, to (III) f. So to complete the
proof of the existence of the Hilbert transform H f, it remains to prove that ¢. * f and ¢g * f also
converge in LP(R). In fact, as will be proved below, they converge to zero. Taking this claim for
granted for the moment, it follows that

. 8
Hf= lim H.pf=——0)f
i "

in LP(R). In particular, H is a bounded operator as a constant multiple of the average of the
bounded operators 117", In fact, one gets the estimate

8
1 fllp = — (L) £l < 10g2 ®" = D21 £l

but this is far from being optimal.
But, as said, it still remains to prove

lngo = Jim on S =0

This will follow from the general results below; it is easy to check that ¢ satisfies all the required
properties. It is an odd function, which implies [ ¢(x) dz = 0, and since |k(x)| is bounded by 3/4,
it follows that |K(z)| < 3/4 - |z| and hence z7!K(x) and then ¢(z) is bounded. Finally, recall
that ¢ is supported on [—1,1].

5.10. Lemma. Suppose that |p(z)| < C(1+|x|) 170 for some § > 0. Then |p.* f(x)| < C'M f(z),
where M is the Hardy—Littlewood maximal operator.

Proof. By making simple changes of variables and splitting the integration domain it follows that

o F@)] = | [ o0)5(a ~ =) ]

<[ Ut~ el + 3 / 02 R £ (i — ey)| dy
[—1,1] — o J2k<|y|<2k+1
k41
20 z+ _k5 T+e2
< P
<%/ |du+z 252%1 /m - | f(u)| du
2
< 20Mf(z +§ 2 M4CM f(x )_20(1+ m)Mf(gc).

k=0
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5.11. Lemma. If ¢ € L? (R) and f € LP(R) for p € [1,00), then
li =
Rgnoo ¢R * f 0
pointwise. If, in addition, |p(z)| < C(1+|z|)~1=9, then the convergence also takes place in LP(R)
if p € (1,00)
Proof. By Holder’s inequality,

6 £@) = [ 6rw) (@~ ) dy] < orl 171,

and a change of variables shows that ||¢gr|l,y = R™/?|¢[l, — 0 as R — oo.
By the additional assumption and Exercise 2.17(6), |¢r * f| < C'"M f € LP(R), and hence the
remaining claim follows from dominated convergence. O

5.12. Lemma. Let ¢ € L'(R), a:= [¢(x)dx and f € LP(R). Then

lin%) b x f=af
in LP(R) for all p € [1,00) If, in addition |p(z)| < C(1+|x|)~179, then the convergence also takes
place pointwise a.e.

Proof. There holds
65 (@)~ af(@) = [ S~ 2v) - F@)dy,
¢+ f —aflly < /|¢(y)| fC—ey) = fllpdy.

It remains to show that || f(- —ey) — f||, — 0 as € — 0, since the claim then follows from dominated
convergence.

Let first g € C.(R) (continuous with compact support). Then for all 0 < e < |y|=!, g(- —ey) —g
is supported in a compact set K, bounded pointwise by 2||g|lc (and hence by 2||g|lcc1x) and
converges pointwise to zero by the definition of continuity. Thus ||g(- —ey) —g||, — 0 by dominated
convergence. Such functions are dense in LP(R) for p € [1,00). Hence, given f € LP(R) and ¢ > 0,
there is g € C.(R) with | f — g||, < J, and hence

lirgrlj(l)lp 1f(-—ey) = fllp < lillaj(l)lp (H(f =)=yl + gt —ey)llp + llg — fllp)
=2||f —gll, < 20.

Since this holds for any § > 0, the conclusion is || f(- — ey) — f|l, — 0, and the proof of the norm
convergence is complete.
Concerning pointwise convergence, for g € C.(R) one has

16e * () — ag(x)] < / 16()] - 19z — ev) — g(x)] dy,

where the second factor is dominated by 2||g||~ and tends to zero everywhere by continuity. In
general,

limj(l]lpl% « f—af] < limj(t)lp (M(f—g) + [¢e x g — ag| + Iag—afI) =M(f—g)+lallf — gl

Hence
[{limsup |ge + f —af| > 20} < {M(f —g) > 8} + [{[allf — 9] > 8}| < CO77IIf — g,
E—
which can be made arbitrarily small. (]

Now the proof of
8
Hf=——{)f  [Hflp<ClIflp

is complete.
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5.13. Exercises.

1. Fix z € R and consider the translated dyadic system 29 + z = UjEZ(@jO + z) (note:
same x on every level j), where 2° is the standard system. Find $(z) € {0,1}” so that
P° + x = 2°®) . Observe that 3(z) has a certain special property and conclude that in
general 27 cannot be represented in the form 29 + .

2. In R?, consider the dyadic squares 2; = {2_j([07 1)2 + (k,f)) : k0 €Z}, j€Z. There
is one important difference compared to the one-dimensional case: the squares I € Z; are
now unions of four (rather than two) squares from @j+1.

Find suitable intermediate partitions Z;,/, of R? so that each I € &; is a union of
two sets from %, for all i € %Z ={..,-1,- 1 ,0, ;1 .}. Follow the computation
in Section 5.3 to find a similar representation for f e LP(R?). What do the Haar functions
look like in this case? (Note: there are a couple of different ways to do this, but it suffices
to provide one. No uniqueness here, your choice!)

3. Let &,...,&, € C. Consider the function F : R™ — C, (tg)7_; — Y p_; txlk. Prove
that, on the unit cube [—1,1]", |F(¢)| attains its greatest value in one of the corners,
t € {~1,1}". (Hint: Write the numbers (A, + 1) € [0,1] with their binary expansion,
O +1) = 302, b2/, where by; € {0,1}. Then notice that by; = §(ex; + 1) for
appropriate €;; € {—1,1}, and it follows that A\, = Z;il ek;279))

4. Let f1,...,fn € LP(R) and g1,...,9, € L=(R). Let &1,...,e, be independent random
signs with P(e, = —1) = P(ex, = +1) = 1/2. Prove that

n p
/E‘nggk ) fr( "dr < max ||9k||p /Elzgkfk(f)’ da
R k=1

(Hint: use the previous exercise for each 2 € R and a similar trick as in 5.4.)

5. Let f € LP(R), p € (1,00), and Hy,f be its truncated Hilbert transform. Consider the
limit where a,b — 0 in such a way that a < b < 2a. Prove that |Hypf| < CM f for all such
a,b, where M is the Hardy—Littlewood maximal operator. Show that H,, f — 0 pointwise
a.e. in the considered limit. (Hint: prove the pointwise limit for continuous functions first
and obtain the general case with the help of density and the pointwise domination by the
maximal function.)

5.14. References. Petermichl’s representation for the Hilbert transform as an average of the
dyadic shifts is from [13]. The proof given here is somewhat different from Petermichl’s original
one, and was first presented in the first edition of this course in 2008 and published in [5]. The
proof of the LP boundedness of the dyadic shift, and the notation ‘III’, are taken from [12].
Although Petermichl’s representation was here used just to derive the classical Hilbert transform
boundedness on LP(R), its motivation comes from applications in the estimation of H, or some
new operators derived from it, in more complicated situations like weighted spaces [11].

The L? boundedness of the Hilbert transform is originally a classical result of M. Riesz [14].
Nowadays, there are many different proofs for this important theorem (which is perhaps most
often handled in the framework of the Calderén—Zygmund theory of singular integrals), and even
several different ways of getting it as a consequence of Burkholder’s inequality. However, most
of the martingale proofs rely on continuous-time notions like stochastic integrals and Brownian
motion and would require more extensive preliminaries.

6. MORE ON DYADIC SHIFTS

6.1. Background. In the last couple of years, dyadic shifts have played an important role in the
theory of weighted norm inequalities, which is the topic of another course. Here, we will take
a look into these operators from the point-of-view of martingale theory. A general dyadic shift
of type (m,n) on R (a similar definition could be made on R¢, d > 1, as well) is defined as an
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operator of the form

S = Z Ag, A f = Z aryx(f,h)hs,

Keg 1,Je2; 1,JCK
[T|=2""|K]
[7]=2""|K|
where the constants ayjx satisfy
I||J
lar il < VI

(K]
We observe that Petermichl’s shift 111 is the special case with

A = (fha)Hie = ——(fohic) (b, — ),

V2
so that (m,n) = (0,1), and

0K Ky K = =
R ¥
In a similar way as the Hilbert transform can be obtained as an average of Petermichl’s shifts on
different dyadic systems, quite general singular integral operators of the form

Tf(x) = / K(z,4)f(y)dy

can be obtained as averages of the general dyadic shifts S; the general form of this result was first
discovered in [6].
Now we look at the LP boundedness of the shifts S.

6.2. Separation of scales. Let N := max{m,n} + 1. Then we split (formally)

S-Y a4y Y Y

Keo r=0 k€Z KEDyN4r

The point of the splitting is this: Let r be fixed. If h; appears in A for some K € Py, =: S,
then h; is constant of the dyadic intervals of length 1|I| = 2717™|K| > 27N |K| = 2= (k+1)N-r,
so in particular it is constant on all K’ € Z(41)N4r = Fky1, and then on all K’ € @ for any
k' > k. Similarly each h; appearing in Ag is constant on all K’ € o, with k¥’ > k. On the other
hand, clearly the average of h; and h; on K, and on all equal or larger intervals is zero. Thus
we are in a position to consider a martingale difference sequence with respect to the filtration
Fy, = o(,), k € 7. Note that each K € o7 is the union of finitely many (in fact, 2"V) intervals
K' e %]@4_1.

6.3. Decoupling: preliminary considerations. ‘Decoupling’ vaguely refers to the replacement
of an object by a new one, which has more independence. A relatively simple form of this was
given by the version of Burkholder’s inequality with the independent random signs ej:

[, = e,

this was enough to get an L? estimate for Petermichl’s shift ITI. We are now looking for a somewhat
more elaborate version.
Let us more generally consider a martingale difference sequence dj adapted to %, as above.

Thus
di, = Z 1gdy = Z 1k Z ladg,= Z 1x Z La(dg)a,
Keol 1 Keah_, A, Keal 1 A€y,
ACK ACK

where the Zj-measurability of dj means that dj is a constant (di)4 on A € 7. The martingale
difference property E[dk|%,—1] = 0 means that

/dkdx: > dw) o |K'| = 0.
K

K'cgt),
K'CK
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The above dj, = di(z) is a function of z € R. Clearly we could also view it as a function
di = di(x,y) of x € R and y in some new space €2, where the dependence on y is trivial. But next
we would like to replace dj by a ‘decoupled’ version Jk(x, y), where part of the original dependence
on x is pushed into the new variable y, in such a way that the dependence on x is simpler than
before.

Consider a fixed K € P first. Let pux be the Lebesgue measure on K divided by |K|. Note
that the functions

Ig(@)dr(@)1k(y) = > (di)ala(x)lp(y)

A,Bes,
A,BCK

and

g (2)de(W)lk(y) = > (de)pla(z)ls(y)

A,Be),
A BCK

are equally distributed (i.e., take the same values in sets of equal measure).
Now consider two new functions, first

ure(,9) 1= 5 (k@)@ (v) + e (@i (v) 1 ()

> %(<dk>A + (dr) )1 a(@)15(y)
A,Beg,
A,BCK
= > {di)alaxalz,y)

A€ oty
ACK

. %«dm + {du) B)LaxpuBxa(@,y),

A,BeE),
A,BCK;A<B

where in the last step we introduced some order among the finite family

{Acd: ACK}={A}UO

i=1 >
and defined A < B ifand only if A= A;, B=A;, and i < j.
The second new function is

i) = 5 (L)) e () = L)) L)

- ¥ %<<dk>A—<dk>B>1A<x)1B<y>

= Z %(<dk>A — <dk>B)(]—A><B(xay) - 1B><A(x’y))'

Now clearly
L (@)di(2)1k (y) = uk (2, y) + vk (2,9),
L (@)di(y)1k (y) = uk (z,y) — vk (z,y),
but the key observation is that this decomposition realizes the second function as a martingale

transform of the first one.

6.4. A new measure space. For each K € &, and k € Z, let Qx be the measure space K
equipped with the o-algebra # := &, N K and the normalized Lebesgue measure pux = da/|K]|.
We consider the big product measure space

Q.= H 957 (where o = U gfk)

Keo kEZ
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of sequences y = (yx ) ke indexed by the (countably many) sets K € o/. The product o-algebra
is defined as

Y :=0o(¥), where 2?7::{ ﬁ Ak Ak 69}(},
Ked

and the x in the product means that only finitely many terms Ax are nontrivial, i.e., Ax # Q.
The product measure on (€2, %) is the unique measure p on % such that

M(Kl;[m AK) - Kl;[ﬂM(AK) VK];[g{ A €.

(The existence of such a measure, i.e., the extension of u form % to all of % is a nontrivial result,
but we take it for granted here.)

We now counsider the measure space R x Q. Its points will be denoted by (z,y), where further
Yy = (Yr)Kew. It is also convenient to split y as y = (Y<k, Yk, Y>k), where

Y<io = (YK)KeU,_, 10 Yk = WK)Ked 1> Yok = (UK)KeU,., o1-

We also define the related space Q<i = []ey. . K (Q and Qs similarly) and the o-
j<k Zi—
algebras

Wy :=o0(#y), where @;k = { H A 1 Ak € %‘K}
KeU;c, <5

(%, and %%, similarly), where [[* has the same meaning as before. It follows that for every k
there are the splittings Q = Q. X Qx X Qsp as well as ¥ = o(Zy, X @ X #51). We also have
the partial product measures p<g, fg, b>k-

6.5. Filtration on the new measure space. We have

di(z) = di(z,y) = Z 1k (2)dy(2)1k (yx) = Z (uk (z,yK) + vk (2, YK ))

Keal 1 Keot_1
and
(6.6) di(z,y) = Z 1k (2)de(yr )1k (yx) = Z (uk (7,yK) — vi (2, YK));
Keot 1 Keal 1
thus }
di = uk + Ug11/2, di = Uk — Upy1/2,
where
u(r,y) = Y uk(e,yx)
Keot
= > [ > {di)alaxa(@, yk)
Kedh_1 Acd,
ACK
1
+ > (i + () ) laxpumxal@ yic)]
A,Bed
(6.7) A,B€gKk
A<B
Up1/2(2,y) == Z vk (T, YK )
Keat, 1
1
= > > 5 (dk)a = {d) B)(Laxp — Lpxa)(@, yx)-
Keot1 A,BES),
A,BCK
A<B
Now, we would like to view (uy) pelyasa martingale difference sequence on the product measure
2

space (R x Q,0(# x %), de x p). Although the idea is intuitively simple, it gets notationally
complicated, so let us informally sketch the idea first. The key features are as follows:
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(a) both up and uy4q/o are Fp-measurable with respect to x, and #<;-measurable (in fact,
even %-measurable, but we need an increasing o-algebra as a function of k for a filtration)
with respect to y.

(b) for every K € ),_1, the restriction 1k (x)ug(z,y) depends on = and yx “in a symmetric
Way”;

(c) as x varies over a #j_j-measurable set (a union of some K € «%,_1) and y over a @<p_1-
measurable set (so that yx for K € &, must vary over its entire domain K), we have

up(z, yi ) de dyx
w ) )y

= il T aaldilal+ Y 5 a+ (ds) 2041 Bl

Aco A,Bet
(6.8) AEQKk A’,BEgKk
A<B
\K| > (di)alAl ) IB| = (d)alAl = /dk
A€o, Be ), AE:ka
ACK BCK ACK

since dj, itself is a martingale difference;
(d) for (z,yx) on the symmetric sets A x BU B x A, the function uy/, takes equal positive
and negative values on two halves of the set, so it averages to zero.
Here is the idea (to be made more precise in a moment): From (a) and (b) it follows that w412
is measurable with respect to the o-algebra %,1/2 = 0(Fp X D<r X Q>1), while uy, is measurable
with respect to a smaller “symmetric part” %, C %,+1/2- By (c), it follows that Efuy|%,_1/2] = 0
and (d) implies that Efu1/2|%] = 0.
Now, we want to express this in a systematic way, and we make the following definitions:

@p:{ U LJ[Ax@waquwaA]

Kegal 1 A,BE,

ABCK
(6.9) X H Hx Qs :Qap € g’<k},
HeEgl 1
HAK
Uiy1)2 = 0(Fp X Y X Q) = { U AxQax9p:Qac @<k}
A€oty

These are collections of subsets of Rx ), and we implicitly use the splitting (z,vy) = (2, y<k, Yk, Y>k),
where moreover yr = (yr; (Yr)Hew,_\{Kk}). One can check that both % and %1/, are o-
algebras. By substituting & — 1 in place of k, it follows that

02/;@,1/2 ::{ U KXQKXQICXQ>/€:QK€@</€}.
Keat, 1
Writing Q, = K X HHe,Q{k.,l\{K} H, and taking Qap = Qk for all A,B € «, with A,B C K,
we see that %, /2 € %,. Observing that Qap x B x HHedk_l\{K} H e %y, for Qap € %, and
B € Jk, K € a1, we see that %, C U.41/2. Thus (%k) 7Z is a filtration, and it is easy to

see that uy is %j-measurable for all k& € %Z ={..., —%, , 1 .0, 551, 2, o)
6.10. The martingale difference property. It remains to check that E[ug|%,_1/2] = 0 for all
ke 7.

Let us first show that Elug|%},_1/2] = 0 for all k € Z: We integrate u, over any set of the
form K x Qr x Qk X Qsy, where K € o,_1 and Qg € P (finite unions of such sets form a
W, )2-ideal which contains a countable cover).

dZ/K
(o) drduy) = perl@u) [ el ) da T

/I(xQKkaxQ>k KxK
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where we used the product-measure structure du(y) = dpr(y—i) dpr(yr) dpsk(ysk), and the
fact that 1x(z)uk(z,y) only depends on the coordinate yx of y. In (6.8) we already checked that
the right side is zero, verifying the martingale difference property of u; for k € Z.

It remains to check that E[uy/2|%] = 0 for k € Z, thus evaluate the integral of uj1/o over
any set of the form [A X Qap x BU B x Qap X A] x HHedk_l\{K}H x Qs for A, B €
with A, B C K € @1 and Qap € #~. Using again the product-measure structure and the
dependence of 1 (z)ug41/2(x,y) only on yg, we find that this integral is equal to
M<k(QK)/ Upy1/2(, yxc) d TIy(T

AXBUBXxA

which is zero, since uy41/2(2,yx) takes opposite values on the sets A x B and B x A of equal
measure.
Altogether, we have confirmed that:

6.11. Proposition. The functions (uk)kelz defined in (6.7) form a martingale difference sequence
2
adapted to the filtration (%k)kelz defined in (6.9).
2
From Burkholder’s inequality we can now derive the following consequence:

6.12. Theorem (Decoupling of martingale differences). Let di be a martingale difference sequence
adapted to a filtration Fy, where each Fy, is generated by a countable collection of atoms <),. Then

1 i
613 DI BNES DU BN BT
(6.13) By zk: "oy = zk:"'“ o P Zk: e )

where the decoupled sequence dy, is defined in (6.6), 2 is the probability space related to the variable
Yy = (Yr)kez = (Yk ) ke, and the i, = £1 are arbitrary signs.
In particular, we also have the estimate

1 -
w0 Sl <[ S it

where Q' is another probability space supporting the independent random signs €y,.

LP(RxQxQ') Lr(R)

Proof. Using the functions ug, uj1/2, we have

> mwdy = 5 Z Mkt — NkUk+1/2) Z Qg (Ck =k, Ck1/2 ="Mk Yk € Z>,
keZ kEZ
2

de—*z up + Upg1/2) = Z U,

kEZ kEZ
2

Since wk)keéz
transform of Zke 1, uk by the transforming sequence (Ck)

is a martingale difference sequence, we see that Zke 1, Cruy is the martingale
2

pels and since §,§ = 1, we see that the
2

converse holds as well. Thus (6.13) is a direct consequence of Burkholder’s inequality.
The estimate (6.14) follows from (6.13) by taking ny := e (w’) and integrating the pth power

of (6.13) over v’ € Q. O

6.15. Back to dyadic shifts. We now consider a dyadic shift with scales separated, i.e.,

Sf= Z Z Ak f, Agf = Z aryr(f,hi)hy,

kEZ KG@}QN+T::W)€ 1,Je2;1,JCK
[I|=2""|K|
[J|=27"|K]
where m,n,r €€ {0,1,..., N — 1} are fixed. We can also write

Ay f(z,a') = % /K axe (2 f(2') da’,
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where

(IK(CL' LL‘) |K| Z (l[JKh[(CL'/)hJ(LIT)
1,Je2;1,JCK
[I]=2"""K]|
[J]=2""|K|

satisfies |ag (z,2")| < 1, thanks to |K||lajsx| < v/|I|-|J| and the scaling of the Haar functions,

|hi| < 11/+/I1].

Let us also denote

D= 3 (i hadh,

I€PICK
[1]>27 VK]
and observe that
f= > DY, Axf=AxDYF

KG'Q{::Uk:ez a,

= > Axf,  d= Y DYVF,

Ked), Ked),

Finally, notice that both

are martingale difference sequences with respect to the filtration %y := o(& ), which has the form
that we have considered above.
A first application of Theorem 6.12 shows that

P = < €
5= | ], < 5] St

Lr(RxQ)
where
) 1
@y = 3 1k@ADY flyx) = 3 1K(x)K|/ ax (yx, o) D f(a') da’
Ked), Kedy, K
= 3 1) | anluae i) DR Fluf) duly)
Ked), Q
Thus
N
15 F 1l ey < By / (ng > k@ax (i yi) D FWh)) dnt) |, o
Ke (RxQxQ', dz du(y) de)
<5/He 1x(z)a ,’D(N)” du(y’
b 112 2 x@ax e i) Dic S| oo ananiy 4o )
<Ha 1xe(z)a ,’D(N)" .
By Z kKedk w@ar(yr yie) Dic " F () LP(Rx QX xQ, dz du(y) de du(y’))

Next, we use Fubini’s theorem and consider the LP integral norm over the other variables for a
fixed x € R. Then the summation over K € &, disappears, since there is exactly one K = K (k, x)
such that z € K € 4, for every k € Z. Thus the integral is of the form considered in Exercise 4
in Sec. 5.13, and we can use the conclusion of that exercise to remove the functions ax with
laklloo < 1:

< ﬁpH ZEk ff)D%V)f(y}()‘

Keg,

= Bp” Zi‘:k k‘
Lr(RxQ' xQ, dzde du(y LP(]RXQXQ’)

We also removed the integration over the probability space (€2, du(y)), since there is no more
y-dependence inside the norm.
Now we are in a position to apply the other side of the decoupling estimate of Theorem 6.12:

L < 55| x|
6p";€k k LP(RxQxQ) _ﬂp ; K

We have thus shown that:

_ 122
oy = Bl e
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6.16. Theorem. Let S be a dyadic shift with scales separated. Then
ISfllp < Byl fllpy  p € (1,00).

This bound is independent of the parameter NV of the shift. If S is a general dyadic shift without
the separation of scales, we can use the splitting in Sec. 6.2 and the triangle inequality to deduce
that

IS fllp < NB I fllp-

6.17. References. Dyadic shifts, in the generality considered here, were introduced by Lacey,
Petermichl and Reguera [8]. They played an important role in the resolution of the so-called
Ay conjecture [6] on weighted norm inequalities (see the corresponding course for more details).
The present martingale point-of-view to the dyadic shifts has not been presented before, although
parts of it can be implicitly seen in [7]. There are other approaches to this estimate for real-valued
functions that we have considered, but the present decoupling point-of-view is useful in view of
some vector-valued generalizations. The Decoupling Theorem 6.12 is essentially due to McConnell
[9] in a more abstract formulation; the more concrete version here is from [7]. The present proof,
where this estimate is derived directly from Burholder’s inequality, has not been presented before.

APPENDIX A. ENGLISH-FINNISH-VOCABULARY

adapted — mukautettu maximal function — maksimaalifunktio
conditional — ehdollinen predictable — ennustettava

dilation — venytys shift — siirto

dyadic — dyadinen stopping time — pysédytysaika
expectation — odotusarvo transform — muunnos

filtration — suodatus translation — siirto

independent — riippumaton truncated — katkaistu

martingale — martingaali
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