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1. Conditional expectation

1.1. Basic notions of measure theory. A triplet (Ω,F , µ) is called a measure space if
• Ω is a set,
• F is a σ-algebra of Ω, i.e., a collection of subsets of Ω which satisfies

∅,Ω ∈ F , E ∈ F ⇒ EC := Ω \ E ∈ F , Ei ∈ F ⇒
∞⋃
i=0

Ei ∈ F ,

• µ is a measure, i.e., a mapping F → [0,∞] which satisfies

µ(∅) = 0, Ei ∈ F , Ei ∩ Ej = ∅ for i 6= j ⇒ µ
( ∞⋃
i=0

Ei
)

=
∞∑
i=0

µ(Ei).

A function f : Ω → R is called F -measurable if f−1(B) := {f ∈ B} := {ω ∈ Ω : f(ω) ∈ B} ∈ F
for all Borel sets B ⊆ R. We denote by L0(F ) the space of all F -measurable functions f : Ω→ R.
Most of the time, we think of the space Ω and the measure µ as fixed, but we may consider
different σ-algebras (and other families of sets) F ; that is why we emphasize F but not Ω and µ
in the notation.

1.2. More definitions. We say that a collection A of subsets of Ω contains a countable cover
if there are at most countably many sets A0, A1, . . . ∈ A such that Ω =

⋃∞
i=0Ai. We say that a

subset A ⊆ F of a σ-algebra F is an F -ideal if A ∩ F ∈ A for all A ∈ A and all F ∈ F . Note
that if an F -ideal A contains a countable cover, then this cover can be chosen pairwise disjoint;
indeed, if A0, A1, . . . ∈ A ⊆ F form a cover, then Fk :=

⋃k
j=0Aj ∈ F and

A′k := Ak \ Fk−1 = Ak ∩ FC
k−1 ∈ A

by the ideal property, and these form a disjoint countable cover.
We denote by F 0 the collection of sets in F with finite measure, i.e.,

F 0 := {E ∈ F : µ(E) <∞}.
Clearly F 0 is an F -ideal. A σ-algebra F is called σ-finite if F 0 contains a countable cover.

1.3. Lemma. Let A ,B ⊆ F be F -ideals. Then

A ∩B = {A ∩B : A ∈ A , B ∈ B},
and this set is an F -ideal. If both ideals A ,B contain countable covers, then so does A ∩B.

Proof. If A ∈ A and B ∈ B ⊆ F , then A ∩ B ∈ A by the ideal property of A, and similarly
A ∩B ∈ B by the ideal property of B. Thus A ∩B ∈ A ∩B. On the other hand, if E ∈ A ∩B,
then E = A ∩ B, where A := E ∈ A and B := E ∈ B. The ideal property of A ∩ B is
immediate to check. If {Ai : i ∈ N} ⊆ A and {Bj : j ∈ N} ⊆ B are countable covers, then
{Ai ∩Bj : i, j ∈ N} ⊆ A ∩B is also a countable cover. �

1.4. Lemma. Let A ⊆ F be an F -ideal that contains a countable cover. If f ∈ L1
A (F , µ)

satisfies
∫
E
f dµ ≥ 0 for all E ∈ A , then f ≥ 0 a.e. (almost everywhere). The same is true if “≥”

is replaced by “≤” or “=”.

Version: January 17, 2013.
1



2 TUOMAS HYTÖNEN

Proof. Let Fi := {f < −1/i} ∈ F and Aj ∈ A be one of the sets from the definition of countable
cover. Since A is an ideal, we have Fi ∩Aj ∈ A and then

0 ≤
∫
Fi∩Aj

f dµ ≤
∫
Fi∩Aj

(
− 1
i
) dµ = −1

i
µ(Fi ∩Aj) ≤ 0.

Hence µ(Fi ∩ Aj) = 0, and summing up over j ∈ N it follows that µ(Fi) ≤
∑∞
j=0 µ(Fi ∩ Aj) = 0.

Since {f < 0} =
⋃∞
i=1 Fi, we see that µ({f < 0}) = 0, which is the same as f ≥ 0 a.e.

The case ≤ is obtained from the one already treated by considering the function −f . The case
= follows from the other two upon observing that x = 0 if and only if x ≥ 0 and x ≤ 0. �

1.5. Sub-σ-algebra. If G ⊆ F is another σ-algebra, it is called a sub-σ-algebra of F . In this
situation the G -measurability of a function is a stronger requirement than its F -measurability,
since there are fewer choices for the preimages {f ∈ B}. Similarly the σ-finiteness of (Ω,G , µ)
is a stronger requirement than that of (Ω,F , µ). In the sequel, however, all measure spaces are
assumed to be σ-finite unless otherwise mentioned.

For f ∈ L0(F ), we denote

Gf := {G ∈ G : 1Gf ∈ L1(F )}.
Clearly this is a G -ideal.

1.6. Lemma. For every f ∈ L0(F ), the collection Ff contains a countable cover.

It is important to observe that, in this lemma, we have the same σ-algebra F is “f ∈ L0(F )”
and in “Ff ” here. It is not always true that Gf contains a countable cover if G ( F is a smaller
σ-algebra than the one with respect to which f is measurable.

Proof. Let Ei ∈ F 0 be the sets from the definition of σ-finiteness of F , and let Fj := {|f | ≤
j} ∈ F . Since f is real-values, we have Ω = {|f | <∞} =

⋃∞
j=0 Fj . Then each 1Ei∩Fjf ∈ L1(F );

indeed ‖1Ei∩Fjf‖1 ≤ j ·µ(Ei) <∞. Thus {Ei ∩Fj : i, j ∈ N} ⊆ Ff is a countable cover of Ω. �

1.7. The conditional expectation. Let f ∈ L0(F ) and g ∈ L0(G ), where G ⊆ F is a σ-finite
sub-σ-algebra. We say that g is a conditional expectation of f with respect to G if there exists a
G -ideal A ⊆ Gf ∩ Gg that contains a countable cover and satisfies∫

A

f dµ =
∫
A

g dµ ∀A ∈ A .

1.8. Lemma. If f ∈ L0(F ) has a conditional expectation g ∈ L0(G ), then it is unique (a.e.).
Moreover, Gf contains a countable cover, we have Gf ⊆ Gg, and∫

A

f dµ =
∫
A

g dµ ∀A ∈ Gf .

Proof. We prove the last assertion first. So let g be a conditional expectation, and A ⊆ Gf ∩ Gg
an associated G -ideal with a countable cover {Ai : i ∈ N} which we now choose disjoint. Let
G ∈ Gf be arbitrary, and note that {g ≥ 0}, {g < 0} ∈ G . By the ideal property, we find that
Ai ∩G ∩ {g ≥ 0} ∈ A , and thus∫

Ai∩G∩{g≥0}
g dµ =

∫
Ai∩G∩{g≥0}

f dµ.

Summing over i ∈ N, we get ∫
G∩{g≥0}

g dµ =
∫
G∩{g≥0}

f dµ.

Similarly, we get
∫
G∩{g<0} g dµ =

∫
G∩{g<0} f dµ, and hence∫

G

|g|dµ =
∫
G∩{g≥0}

g dµ−
∫
g∩{g<0}

g dµ ≤
∫
G

|f |dµ <∞ G ∈ Gg,∫
G

g dµ =
∫
G∩{g≥0}

g dµ+
∫
g∩{g<0}

g dµ =
∫
G

f dµ.
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So indeed Gf ⊆ Gg, and we have
∫
G
g dµ =

∫
G
f dµ for all G ∈ Gf . Clearly Gf contains a countable

cover, since Gf ⊇ A , and A contains a countable cover.
Suppose then that g1, g2 ∈ L0(G ) are two conditional expectations of f . By the part that we

already proved, we find that∫
G

g1 dµ =
∫
G

f dµ =
∫
G

g2 dµ ∀G ∈ Gf ,

where Gf is a G -ideal that contains a countable cover. Thus g = g1 − g2 ∈ L0(G ) satisfies∫
G
g dµ = 0 for all G ∈ Gf , and Lemma 1.4 shows that g1 = g2 almost everywhere. �

The conditional expectation of f with respect to G , now that it has been proven unique, will
be denoted by E[f |G ]. Next it will be shown that it always exists, provided only that Gf contains
a countable cover. Clearly this condition is necessary by Lemma 1.8.

1.9. Existence for L2-functions. The spaces L2(F , µ) and L2(G , µ) are both Hilbert spaces,
and the latter is a closed subspace of the former. If f ∈ L2(F , µ), let g ∈ L2(G , µ) be its orthogonal
projection onto the space L2(G , µ). Hence f − g ⊥ L2(G , µ). If G ∈ G 0, then 1G ∈ L2(G , µ).
Hence

0 = (f − g, 1G) =
∫
G

(f − g) dµ,

and thus g satisfies the definition of conditional expectation for the countably-covering G -ideal G 0.

1.10. Simple observations. If g ∈ L0(G , µ), it is its own conditional expectation, g = E[g|G ].
In particular, the conditional expectation of a constant function is the same constant.

Linearity. Suppose that f1, f2 ∈ L0(F ) have conditional expectations gi = E[fi|G ] ∈ L0(G ), so
in particular

∫
G
gi dµ =

∫
G
fi dµ for all G ∈ Gfi ⊆ Ggi , and Gfi contains a countable cover. By

Lemma 1.3, A := Gf1 ∩ Gf2 ⊆ Gg1 ∩ Gg2 is a G -ideal containing a countable cover, and clearly

A ⊆ Gα1f1+α2f2 ∩ Gα1g1+α2g2

and for all A ∈ A , we have∫
A

(α1f1 +α2f2) dµ = α1

∫
A

f1 dµ+α2

∫
A

f2 dµ = α1

∫
A

g1 dµ+α2

∫
A

g2 dµ =
∫
A

(α1g1 +α2g2) dµ.

Thus E[α1f1 + α2f2|G ] exists and equals α1E[f1|G ] + α2E[f2|G ].

Comparison. If the pointwise (a.e.) inequality f1 ≤ f2 holds, then also E[f1|G ] ≤ E[f2|G ]. This
follows from the fact that for all G ∈ Gf1 ∩ Gf2 (which is a G -ideal containing a countable cover
by Lemma 1.3) we have∫

G

E[f1|G ] dµ =
∫
G

f1 dµ ≤
∫
G

f2 dµ =
∫
G

E[f2|G ] dµ

and Lemma 1.4.
This implies that if f ∈ L0(F , µ), and both E[f |G ] and E[|f | |G ] exist, there holds

|E[f |G ]| = max
{
E[f |G ],−E[f |G ]

}
= max

{
E[f |G ],E[−f |G ]

}
≤ E[|f | |G ],

where the last estimate was based on the facts that both f ≤ |f | and −f ≤ |f |.

1.11. Existence for L1-functions. Let then f ∈ L1(F , µ). By basic integration theory there
exists a sequence of functions fn ∈ L1(F , µ) ∩ L2(F , µ) such that fn → f in L1(F , µ). By 1.9
the conditional expectations gn := E[fn|G ] and E[|fn| |G ] exist and belong to L2(G , µ).

Note that Gfn = G = Ggn for fn ∈ L1(F ), and hence

‖gn‖1 =
∫

Ω

|gn|dµ =
∫

Ω

|E[fn|G ]|dµ ≤
∫

Ω

E[|fn| |G ] dµ =
∫

Ω

|fn|dµ = ‖fn‖1.

Repeating the previous computation with gn replaced by gn − gm, it similarly follows that
‖gn − gm‖1 ≤ ‖fn − fm‖1, and this tends to zero as n,m→∞, since fn → f . Hence (gn)∞n=1 is a
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Cauchy sequence in L1(G ) and hence converges to some functions g ∈ L1(G ). This g satisfies, for
all G ∈ G , the equality∫

G

g dµ = lim
n→∞

∫
G

gn dµ = lim
n→∞

∫
G

E[fn|G ] dµ = lim
n→∞

∫
G

fn dµ =
∫
G

f dµ,

and hence g = E[f |G ].

1.12. Existence in general. Let finally f ∈ L0(F ) such that Gf contains a countable cover. Let
Gi ∈ Gf be disjoint sets such that

⋃∞
i=0Gi = Ω, which thus can be chosen. Now fi := 1Gif ∈

L1(F ), so there exists gi := E[fi|G ] ∈ L1(G , µ).
We set g :=

∑∞
i=0 1Gigi, which converges pointwise trivially, since the Gi are disjoint sets. We

check that g is a conditional expectation of f , with an associated G -ideal

A := {G ∈ G : G ⊆ Gi for some i ∈ N}.
Clearly this is an ideal containing a countable cover, namely, the sets Gi, i ∈ N. Moreover, if
A ∈ A with A ⊆ Gi, then both 1Ag = 1Agi and 1Af = 1Afi are integrable, and∫

A

g dµ =
∫
A

gi dµ =
∫
A

fi dµ =
∫
A

f dµ.

Thus A ⊆ Gf ∩ Gg, and the required identity holds for all A ∈ A .
Altogether, the following result has been established:

1.13. Theorem. Let f ∈ L0(F ), and G ⊆ F be a sub-σ-algebra. Then E[f |G ] ∈ L0(G ) exists if
and only if

Gf := {G ∈ G : 1Gf ∈ L1(F )}
contains a countable cover.

Next, some further properties of the conditional expectation will be investigated with the help
of the following auxiliary result:

1.14. Lemma. Let φ : R→ R be a convex function, i.e.,

φ(λx1 + (1− λ)x2) ≤ λφ(x1) + (1− λ)φ(x2) ∀ x1, x2 ∈ R, ∀ λ ∈ [0, 1],

and
Hφ := {h : R→ R|h(x) = ax+ b for some a, b ∈ R, and h ≤ φ}.

Then φ(x) = sup{h(x) : h ∈ Hφ}.

Proof. For all h ∈ Hφ there holds h ≤ φ, and hence suph∈Hφ h ≤ φ; thus it remains to prove the
reverse inequality.

Let x0 ∈ R. We claim that
φ(y)− φ(x0)

y − x0
≤ φ(z)− φ(x0)

z − x0
for all y < x0 < z.

Indeed, the claim is equivalent to( 1
x0 − y

+
1

z − x0

)
φ(x0) ≤ 1

x0 − y
φ(y) +

1
z − x0

φ(z),

which can be written as

φ(x0) ≤ λφ(y) + (1− λ)φ(z), λ :=
1/(x0 − y)

1/(x0 − y) + 1/(z − x0)
=
z − x0

z − y
where

λy + (1− λ)z =
(z − x0)y + (x0 − y)x

z − y
= x0.

Thus the claim follows by definition of convexity with x1 = y, x2 = z, and λ = (z − x0)/(z − y).
Let us now choose any

a ∈
[

sup
y<x0

φ(y)− φ(x0)
y − x0

, inf
z>x0

φ(z)− φ(x0)
z − x0

]
,
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where the interval in nonempty by what we just proved. This choice implies that

a(x− x0) ≤ φ(x)− φ(x0) ∀x 6= x0,

or in other words h0(x) := φ(x0) + a(x− x0) ≤ φ(x) for all x ∈ R. and h0(x0) = φ(x0). Since x0

was arbitrary, this completes the proof. �

1.15. Theorem (Jensen’s inequality). Let f ∈ L0(F ), φ : R→ R be convex and Gf ,Gφ◦f contain
countable covers. Then

φ
(
E[f |G ]

)
≤ E[φ(f)|G ].

Proof. Let h ∈ Hφ. Then

h
(
E[f |G ]

)
= aE[f |G ] + b = E[af + b|G ] = E[h(f)|G ] ≤ E[φ(f)|G ].

Computing the supremum on the left over all h ∈ Hφ, the claim follows �

1.16. Corollary. Let p ∈ [1,∞] and f ∈ Lp(F ). Then E[f |G ] ∈ Lp(G ) and

‖E[f |G ]‖p ≤ ‖f‖p.

Proof. Let p < ∞, the case p = ∞ being easier. For f ∈ Lp(F ), we have Gf ⊇ G 0, which con-
tains a countable cover by σ-finiteness, so the conditional expectation E[f |G ] exists, and similarly
E[|f |p |G ], since |f |p ∈ L1(F ). Since the function t 7→ |t|p is convex, Jensen’s inequality implies
that

|E[f |G ]|p ≤ E[|f |p |G ].

Integrating over Ω ∈ G|f |p , we get

‖E[f |G ]‖pp =
∫

Ω

|E[f |G ]|p dµ ≤
∫

Ω

E[|f |p |G ] dµ =
∫

Ω

|f |p dµ = ‖f‖pp. �

Next, versions of the familiar convergence theorems of integration theory are presented for the
conditional expectation.

1.17. Monotone convergence theorem. Recall that the version of integration theory says that
if a sequence of measurable functions satisfies 0 ≤ fn ↗ f a.e., then

∫
fn dµ ↗

∫
f dµ, where

fn ↗ f means “converges increasingly”, which entails both the convergence fn → f and the fact
that fn ≤ fn+1 for all n. The corresponding statement for the conditional expectation is the
following:

0 ≤ fn ↗ f ∈ L0(F , µ)
(
where Gf contains a countable cover

)
⇒ E[fn|G ]↗ E[f |G ].

Proof. Note that each Gfn ⊇ Gf also contains a countable cover. Since the conditional expectation
respects pointwise inequalities (part 1.10), it follows that

0 ≤ fn ≤ fn+1 ≤ f ⇒ 0 ≤ E[fn|G ] ≤ E[fn+1|G ] ≤ E[f |G ].

Hence
(
E[fn|G ]

)∞
n=1

is a bounded increasing sequence, so it has a pointwise G -measurable limit,
E[fn|G ]↗ g, and 0 ≤ g ≤ E[f |G ]. It remains to prove that g = E[f |G ].

For all G ∈ Gf ⊆
⋂∞
n=0 Gfn there holds∫

G

g dµ =
∫
G

lim
n→∞

E[fn|G ] dµ ?= lim
n→∞

∫
G

E[fn|G ] dµ = lim
n→∞

∫
G

fn dµ

?=
∫
G

lim
n→∞

fn dµ =
∫
G

f dµ,

where the steps marked with ? were based on the usual monotone convergence theorem. Thus it
follows that g = E[f |G ], which completes the proof. �
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1.18. Fatou’s lemma. The version of integration theory says that

fn ≥ 0 ⇒
∫

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ.

For the conditional expectation we similarly prove

0 ≤ fn ∈ L0(F ), f := lim inf
n→∞

fn ∈ L0(F )(
where each Gf ,Gfn contains a countable cover

)
⇒ E[f |G ] ≤ lim inf

n→∞
E[fn|G ].

Proof. Write out the definition of the limes inferior:

f = lim inf
n→∞

fn = lim
n→∞

inf
m≥n

fm =: lim
n→∞

hn, hn := inf
m≥n

fm.

For every m ≥ n, we have hn ≤ fm, hence E[hn|G ] ≤ E[fm|G ], and by taking the infimum,
E[hn|G ] ≤ infm≥n E[fm|G ]. Moreover, we have 0 ≤ hn ↗ f ∈ L0(F ), so we can use the monotone
convergence theorem to the result that

E[f |G ] = E[ lim
n→∞

hn|G ] = lim
n→∞

E[hn|G ] ≤ lim
n→∞

inf
m≥n

E[fm|G ] = lim inf
n→∞

E[fn|G ]. �

1.19. Dominated convergence theorem. In integration theory one proves that

fn → f, |fn| ≤ g ∈ L1(F , µ) ⇒
∫
|fn − f |dµ→ 0 ⇒

∫
fn dµ→

∫
f dµ,

while the conditional version reads as follows:

fn → f, |fn| ≤ g ∈ L0(F , µ)
(
where Gg contains a countable cover

)
⇒ E

[
|fn − f |

∣∣G ]→ 0 ⇒ E[fn|G ]→ E[f |G ].

Proof. This is left as an exercise. �

The following central result concerning the conditional expectation has no obvious analogue in
the basic integration theory:

1.20. Theorem. Let f ∈ L0(F ), where Gf contains a countable cover. If g ∈ L0(G ), then also
Gg·f contains a countable cover, and

E[g · f |G ] = g · E[f |G ].

Proof. Let {Fi : i ∈ N} ⊆ Gf be a countable cover, and let Gj := {|g| ≤ j} ∈ G . Then
‖1Fi∩Gjg · f‖1 ≤ j · ‖1Fif‖1 <∞, and {Fi ∩Gj : i, j ∈ N} ⊆ Gf ∩ Gg·f is a countable cover.

To prove the identity, suppose first that g is a simple G -measurable function, g =
∑N
k=1 ak1Gk ,

where Gk ∈ G . Then for all G ∈ Gf ∩ Gg·f there holds∫
G

g · E[f |G ] dµ =
N∑
k=1

ak

∫
G∩Gk

E[f |G ] dµ =
N∑
k=1

ak

∫
G∩Gk

f dµ =
∫
G

g · f dµ,

hence g · E[f |G ] = E[g · f |G ] by the uniqueness of the conditional expectation.
If g is a general G -measurable function, by measure theory there exists a sequence of G -simple

functions gn with |gn| ≤ |g| and gn → g. Hence also |gn · f | ≤ |g · f | and gn · f → g · f . An
application of the dominated convergence theorem and the first part of the proof gives

E[g · f |G ] = lim
n→∞

E[gn · f |G ] = lim
n→∞

gn · E[f |G ] = g · E[f |G ],

which was to be proven. �
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1.21. Exercises. These deal with some further important properties of the conditional expecta-
tion.

In all exercised it is assumed that Ω is a set, F and G are its σ-algebras with G ⊆ F , and
µ : F → [0,∞] is a measure. Moreover, all functions are assumed to be F -measurable. Except
in Exercise 1, it is also assumed that all measure spaces are σ-finite.

1. Give an example of the following situation: (Ω,F , µ) is σ-finite but (Ω,G , µ) is not.
2. Prove the dominated convergence theorem for conditional expectations. (See Section 1.19.)
3. Prove the tower rule of conditional expectations: Let H ⊆ G be yet another σ-algebra,

and f ∈ L0(F ) be such that Hf (and hence also Gf ⊇ Hf ) contains a countable cover.
Then

E
(
E[f |G ]

∣∣H )
= E[f |H ].

4. Prove the conditional Hölder inequality : If f ∈ L0(F , µ) and g ∈ L0(F , µ), where G|f |p
and G|g|p′ contain countable covers, then also Gf ·g contains a countable cover, and

E[f · g|G ] ≤ E[|f |p|G ]1/p · E[|f |p
′
|G ]1/p

′
.

(Hint: prove or recall first that for all a, b ≥ 0 there holds ab ≤ ap/p+ bp
′
/p′.)

5. Let B = B(R) be the Borel σ-algebra on R, and

B̃ := {B ∈ B : −B = B}, −B := {−x : x ∈ B}.

Check that B̃ is a σ-algebra, and that for every f ∈ L0(R,B, dx) (where dx is the
Lebesgue measure), B̃f contains a countable cover, and

E[f |B̃](x) = 1
2 (f(x) + f(−x)).

1.22. References. The material of this chapter, when restricted to the case of a probability
space (i.e., a measure space with µ(Ω) = 1), is standard in modern Probability and can be found
in various textbooks, such as the lively presentation of Williams [16]. It is well known “among
specialists” that most of the results remain true in more general measure spaces, but this extension
is seldom found in a systematic way in the literature. A somewhat different framework from the
present one was recently introduced by Tanaka and Terasawa [15].

2. Discrete-time martingales and Doob’s inequality

2.1. Definition. Let (Ω,F , µ) be a measure space and I an ordered set.
• A family of σ-algebras (Fi)i∈I is called a filtration of F if Fi ⊆ Fj ⊆ F whenever i, j ∈ I

and i < j.
• A family of functions (fi)i∈I is called adapted to the given filtration if fi ∈ L0(Fi) for all
i ∈ I.

Let, in addition, the measure spaces (Ω,Fi, µ) be σ-finite.
• An adapted family of functions is called a submartingale if fi ∈ L0(Fi) for all i ∈ I, and

for all i < j, the conditional expectations E[fj |Fi] exist and satisfy fi ≤ E[fj |Fi].
• It is called a martingale if the last inequality is strengthened to the equality fi = E[fj |Fi]

whenever i < j.

If f ∈ L0(F , µ) and (Fi)i∈I is a filtration such that (Fi)f contains a countable cover for every
i ∈ I, then setting fi := E[f |Fi] for all i ∈ I one gets a martingale. If (fi)i∈I is a martingale, then
(|fi|)i∈i is a submartingale. These facts are easy to check.

In applications the index i ∈ I often admits the interpretation of a time parameter. In these
lectures the considerations are restricted to discrete-time filtrations and martingales, where I ⊆ Z.
If I ⊂ Z is a proper subset and (Fi)i∈I and (fi)i∈I are a filtration and a martingale with the
corresponding index set, then one can always define Fi and fi also for i ∈ Z \ I in such a way
that (Fi)i∈Z and (fi)i∈Z are also a filtration and an adapted martingale (exercise).
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2.2. Questions of density. Let us denote

F∞ = σ
(⋃
i∈Z

Fi

)
.

Recall that the notation σ(A ), where A is any collection of subsets of Ω, designates the smallest
σ-algebra of Ω which contains A . It is obtained as the intersection of all σ-algebras containing
A : there is at least one such σ-algebra (the one containing all subsets of Ω) and one easily checks
that the intersection of (arbitrarily many) σ-algebras is again a σ-algebra.

Although it is not required in the definition of a filtration, it is interesting to consider the situ-
ation where the filtration (Fi)i∈Z generates the full σ-algebra F , i.e., F = F∞. In the described
situation it is natural to ask whether F -measurable sets or functions can be approximated by sets
in
⋃
i∈Z Fi or functions measurable with respect to these generating σ-algebras. The following

results provide positive answers to these questions.
Let us denote by F̃ the collection of those sets of F whose finite parts can be approximated

by sets of
⋃
i∈Z Fi, more precisely

F̃ :=
{
E ∈ F

∣∣∣∀E0 ∈ F 0 ∀ ε > 0 ∃F ∈
⋃
i∈Z

Fi : µ(E0 ∩ [E4F ]) < ε
}
.

Here E4F designates the symmetric difference of sets, E4F := (E \ F ) ∪ (F \ E).

2.3. Lemma. Let (Fi)i∈I be a filtration, and F∞ = σ
(⋃

i∈Z Fi

)
. Then F∞ = F̃ .

Proof. Clearly
⋃
i∈Z Fi ⊆ F̃ ⊆ F∞. (The first ”⊆” follows from the fact that if E ∈

⋃
i∈Z Fi,

then F = E works as the approximating set in the definition of F̃ for all E0 and ε.) Thus it
suffices to show that F̃ is a σ-algebra. For then — due to the fact that F∞ was the smallest
σ-algebra containing

⋃
i∈Z Fi — it follows that F∞ ⊆ F̃ , and this implies the assertion.

Trivially ∅,Ω ∈ F̃ , and the implication E ∈ F̃ ⇒ EC ∈ F̃ follows from the fact that
if µ(E0 ∩ [E4F ]) < ε, then also µ(E0 ∩ [EC4FC]) < ε (since EC4FC = E4F ), and thus
FC ∈

⋃
i∈Z Fi works as an approximating set for EC. It remains to prove that Ek ∈ F̃ ⇒ E :=⋃∞

k=1Ek ∈ F̃ .
Fix E0 ∈ F 0 and ε > 0, and denote µ0(G) := µ(E0 ∩ G); this is a finite measure. Since⋃N
k=1Ek ↗ E, i.e., E \

⋃N
k=1Ek ↘ ∅, for sufficiently large N there holds the estimate

µ0

(
E \

N⋃
k=1

Ek

)
< ε.

Let Fk ∈
⋃
i∈Z Fi satisfy µ0(Ek4Fk) < ε · 2−k. Hence Fk ∈ Fi(k) for some i(k) ∈ Z. Let

j := max{i(k); k = 1, . . . , n}, so that Fk ∈ Fj for all k = 1, . . . , n (since (Fi)i∈Z is a filtration)
and hence also

F :=
N⋃
k=1

Fk ∈ Fj ⊆
⋃
i∈Z

Fi.

Now one can estimate

µ0(E \ F ) ≤ µ0

(
E \

N⋃
k=1

Ek

)
+

N∑
k=1

µ0(Ek \ Fk) < ε+
N∑
k=1

ε · 2−k < 2ε,

µ0(F \ E) ≤
N∑
k=1

µ0(Fk \ Ek) < ε,

hence µ0(E4F ) < 3ε, and the proof is complete. �

2.4. Lemma. Let the assumption of Lemma 2.3 be satisfied, and in addition the measure spaces
(Ω,Fi, µ) be σ-finite. If E ∈ F 0, then for all ε > 0 one can find an F ∈

⋃
i∈Z Fi, such that

µ(E4F ) < ε.
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The difference compared to the previous lemma is the fact that there is an estimate for the
measure of the full difference set E4F and not only its intersection with a given E0.

Proof. Since (e.g.) F0 is σ-finite, there are sets Ak ∈ F 0
0 of finite measure with Ak ↗ Ω. Then

E \Ak ↘ ∅, so for some k there holds µ(E \Ak) < ε. Set E0 := Ak and apply Lemma 2.3. This
gives a set F ∈

⋃
i∈Z Fi such that µ(E0 ∩ [E4F ]) < ε. Also F0 := E0 ∩ F ∈

⋃
i∈Z Fi, and this

satisfies

µ(E \ F0) = µ(E \ E0) + µ(E0 ∩ E \ F ) < 2ε, µ(F0 \ E) = µ(E0 ∩ F \ E) < ε.

Hence F0 is a set of the desired type (with the value 3ε). �

As a consequence we get a density result for functions:

2.5. Theorem. Let (Fi)i∈Z be a filtration of the space (Ω,F , µ), where the associated measure
spaces are σ-finite and F = σ

(⋃
i∈Z Fi

)
. Let p ∈ [1,∞). Then⋃
i∈Z

Lp(Fi, µ)

is dense in Lp(F , µ).

Proof. Let f ∈ Lp(F , µ). By integration theory there exists a simple function g =
∑N
k=1 ak1Ek ,

where Ek ∈ F 0, such that ‖f − g‖p < ε. By Lemma 2.4 there are sets Fk ∈ F 0
i(k) ⊆ F 0

j , where

j := max{i(k) : k = 1, . . . , N}, such that µ0(Ek4Fk) < δ. Letting h :=
∑N
k=1 ak1Fk , it follows

that

‖g − h‖p ≤
N∑
k=1

|ak| · ‖1Ek − 1Fk‖p =
N∑
k=1

|ak| · µ(Ek4Fk)1/p < δ1/p
N∑
k=1

|ak| < ε,

as soon as δ is chosen sufficiently small. Hence ‖f − h‖p < 2ε and h ∈ Lp(Fj , µ). �

2.6. Lemma. For f ∈ Lp(F ), p ∈ [1,∞], and G ⊆ F , we have

‖f − E[f |G ]‖p ≤ 2 inf
g∈Lp(G )

‖f − g‖p.

Proof. Let g ∈ Lp(G ) be arbitary. Then g = E[g|G ], so using the linearity of E[ |G ] we get

‖E[f |G ]− f‖p = ‖E[f − g|G ] + g − f‖p ≤ ‖E[g − f |G ]‖p + ‖g − f‖p ≤ 2‖g − f‖p,

and taking the supremum over all g ∈ Lp(G ) completes the proof. �

2.7. Corollary. Under the assumption of Theorem 2.5, for all f ∈ Lp(F , µ) there is convergence

E[f |Fi]→ f in the sense of Lp(F , µ)-norm, when i→∞.

Theorem 2.5 said that there exist good approximations for f in the spaces Lp(Fi, µ); this
corollary tells that conditional expectations provide a way of finding them explicitly.

Proof. Let ε > 0. By Theorem 2.5 there are j ∈ Z and g ∈ Lp(Fj , µ) ⊆ Lp(Fi, µ) for all i ≥ j,
such that ‖f − g‖p < ε. Hence, by Lemma 2.6

‖E[f |Fi]− f‖p ≤ 2‖g − f‖p < 2ε,

for i ≥ j. �
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2.8. A question of pointwise convergence. According to the general integration theory, a
sequence of functions which converges in the Lp norm also has a subsequence converging pointwise
a.e. In the situation of the previos corollary, one does not even need to restrict to a subsequence,
but proving this fact requires a certain auxiliary device. Let us sketch the proof as far as we can
at the present to see which estimate we are still lacking. First of all,

{E[f |Fi] 6→ f} =
{

lim sup
i→∞

|E[f |Fi]− f | > 0
}

=
∞⋃
n=1

{
lim sup
i→∞

|E[f |Fi]− f | >
1
n

}
,

so it suffices to prove that for all ε > 0 there holds

µ
({

lim sup
i→∞

|E[f |Fi]− f | > ε
})

= 0.

Let δ > 0, and let j ∈ Z and g ∈ Lp(Fj , µ) be such that ‖f − g‖p < δ. Then

|E[f |Fi]− f | ≤ |E[f − g|Fi]|+ |E[g|Fi]− g|+ |g − f |.

Taking lim supi→∞ of both sides and observing that the middle term approaches zero (it even
equal zero as soon as i ≥ j), it follows that

µ
({

lim sup
i→∞

|E[f |Fi]− f | > 2ε
})
≤ µ

({
lim sup
i→∞

|E[f − g|Fi]| > ε
})

+ µ
({
|g − f | > ε

})
.

The latter term satisfies the basic estimate

µ
({
|g − f | > ε

})
≤ ε−p‖g − f‖pp < (δ/ε)p,

which can be made arbitrarily small, since δ > 0 can be chosen at will.
The remaining lim sup-term can be estimates by

lim sup
i→∞

|E[f − g|Fi]| ≤ sup
i∈Z

E[|f − g| |Fi] =: M(|f − g|),

where the above defined (nonlinear) operator M is Doob’s maximal operator. So there holds

µ
({

lim sup
i→∞

|E[f − g|Fi]| > ε
})
≤ µ

({
M(|f − g|) > ε}

)
,

and we would need an inequality of the type µ
({
Mh > ε

})
≤ Cε−p‖h‖pp to finish the estimate.

This follows from Doob’s inequality for the maximal function.
Let us first define the maximal function in a slightly more general setting:

2.9. Doob’s maximal function. Let (fi)i∈Z be a sequence of functions adapted to a filtration
(Fi)i∈Z. Let us denote the whole sequence simply by f ; hence f = (fi)i∈Z is not itself a function
but a sequence of functions. Then its Doob’s maximal function is defined pointwise by

Mf := f∗ := sup
i∈Z
|fi|.

Observe that this notation is in agreement with the situation considered above, where f ∈
L1
σ(F , µ) is as function and fi = E[f |Fi].

2.10. Theorem (Doob’s inequality). Let f = (fi)i∈Z be a nonnegative (fi ≥ 0) submartingale with
supi∈Z ‖fi‖p <∞, where p ∈ [1,∞].

• If p = 1, then for all λ > 0, we have

λ · µ(f∗ > λ) ≤
∫
{f∗>λ}

|f |dµ ≤ ‖f‖1

• If p ∈ (1,∞], then f∗ ∈ Lp(F , µ) and more precisely

‖f∗‖p ≤ p′ · sup
i∈Z
‖fi‖p.
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The analogous results for martingales (even without the requirement that fi ≥ 0) follows at
once, for if (fi)i∈Z is a martingale, then (|fi|)i∈Z fulfills the assumptions of the theorem. The
constant p′ in the inequality is the best possible (in the sense that the result does not hold in
general if p′ is replaced by any number c < p′) – this fact will be proven in the exercises.

Doob’s inequality also has a so-called weak-type version for p = 1, but this will not be dealt
with here.

2.11. Preliminary considerations. Before the actual proof of Doob’s inequality, we make some
simplifying considerations. First of all, notice that the case p = ∞ is trivial, so in the sequel we
will concentrate on p ∈ (1,∞).

Observe that it suffices to prove the claim for submartingales (fi)i∈N indexed by the natural
numbers. Namely, from this it follows (just by making a change of the index variable) that the
estimate also holds for martingales with the index set {n, n+1, n+2, . . .} with an arbitrary n ∈ Z,
i.e.,

‖ sup
i≥n

fi‖p ≤ p′ · sup
i≥n
‖fi‖p.

But clearly supi≥n fi ↗ supi∈Z fi as n → −∞, so the monotone convergence theorem (the usual
form from integration theory) implies that

‖ sup
i∈Z

fi‖p = lim
n→−∞

‖ sup
i≥n

fi‖p ≤ p′ · lim
i→−∞

sup
i≥n
‖fi‖p = p′ · sup

i∈Z
‖fi‖p.

Next observe that one can even restrict to finite submartingales (fi)ni=0 with the index set
{0, 1, . . . , n}. Passing from here to the case of all N can be realized by a similar monotone
convergence argument as above. So it remains to prove that∥∥ max

0≤k≤n
fk
∥∥
p
≤ p′ · max

0≤k≤n
‖fk‖p = p′ · ‖fn‖p;

the equality above follows from the fact that 0 ≤ fk ≤ E[fn|Fk], and hence ‖fk‖p ≤ ‖fn‖p for all
k = 0, 1, . . . , n.

The L1 estimate can be reduced to the finite case by using the continuity of the measure in
place of monotone convergence:

{f∗ > λ} =
⋃
n∈Z−

{sup
i≥n

fi > λ} ⇒ µ(f∗ > λ) = lim
n→−∞

µ(sup
i≥n

fi > λ)

and

{sup
i∈N

fi > λ} =
⋃
n∈N
{ sup

0≤i≤n
fi > λ} ⇒ µ(sup

i∈N
fi > λ) = lim

n→∞
µ( sup

0≤i≤n
fi > λ).

2.12. Stopping times. The proof of Doob’s inequality makes use of a simple version of a powerful
stopping time argument. A stopping time is defined as any function

τ : Ω→ Z ∪ {−∞,∞},

with the property that

{τ ≤ k} := {ω ∈ Ω : τ(ω) ≤ k} ∈ Fk ∀k ∈ Z.

We will usually consider stopping times that do not take the value −∞.
Note also that for any stopping time, we have

{τ = k} = {τ ≤ k} \ {τ ≤ k − 1} ∈ Fk,

and
{τ ≥ k} = {τ ≤ k − 1}C ∈ Fk−1.

The idea behind a stopping time is the following: Think of k ∈ Z as the parameter, and Fk

as all the information that we have at time k and all previous times. Let τ be the first time
when something that we can observe happens. Thus, at time k, we know whether the event has
happened by the time k. In other words, the event {τ ≤ k} (“something that we were looking for
has happened at the time k or earlier”) belongs to Fk (“our complete knowledge at time k”).
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A typical example of a stopping time is obtained by

τ := inf{k : fk > λ} (inf ∅ :=∞)

where (fk)k∈Z is an adapted sequence (i.e., fk is Fk-measurable). To see that this is a stopping
time, note that for all k ∈ Z, we have

{τ ≤ k} =
⋃
j≤k

{fj > λ},

where {fj > λ} ∈ Fj ⊆ Fk, and thus also the union belongs to Fk. Note also that

{τ =∞} = {f∗ ≤ λ}.

In the proof of the finite version of Doob’s inequality obtained above, we will consider the
variant

τ := inf{k ∈ {0, 1, . . . , n} : fk > λ} ∈ {0, 1, . . . , n} ∪ {∞}.
So, starting from 0, the time τ is the first index k such that fk > λ, or τ = ∞, if no such index
exists.

2.13. Proof of Doob’s L1 inequality. Let us write f∗n := max0≤k≤n fk. We use the stopping
time just defined:

µ(f∗n > λ) = µ(τ <∞) =
n∑
k=0

µ(τ = k) =
n∑
k=0

∫
{τ=k}

dµ.

If τ = k, then, by definition, fk > λ, and thus∫
{τ=k}

dµ ≤ 1
λ

∫
{τ=k}

fk dµ =
1
λ

∫
{τ=k}

E(fn|Fk) dµ =
1
λ

∫
{τ=k}

fn dµ,

where we used the submartingale property and the definition of the conditional expectation, ob-
serving that {τ = k} ∈ Fk. Combining everything and summing up, we have

µ(f∗n > λ) =
n∑
k=0

∫
{τ=k}

dµ

≤ 1
λ

n∑
k=0

∫
{τ=k}

fn dµ =
1
λ

∫
{τ<∞}

fn dµ =
1
λ

∫
{f∗n>λ}

fn dµ ≤ 1
λ
‖fn‖1.

which is precisely Doob’s L1 inequality in the finite case.

2.14. Proof of Doob’s Lp inequality. We make use of the formula

‖f∗n‖pp =
∫

Ω

f∗n(ω)p dµ(ω) =
∫ ∞

0

pλp−1µ(f∗n > λ) dλ

and the L1 inequality that we already proved:∫ ∞
0

pλp−1µ(f∗n > λ) dλ ≤
∫ ∞

0

pλp−1 1
λ

∫
{f∗n>λ}

fn(ω) dµ(ω) dλ

=
∫ ∞

0

∫
Ω

pλp−21{(ω,λ):f∗n(ω)>λ}fn(ω) dµ(ω) dλ

=
∫

Ω

∫ f∗n(ω)

0

pλp−2 dλfn(ω) dµ(ω)

=
∫

Ω

p

p− 1
f∗n(ω)p−1fn(ω) dµ(ω) = p′

∫
Ω

fn(f∗n)p−1 dµ.

We apply Hölder’s inequality:∫
Ω

fn(f∗n)p−1 dµ ≤
(∫

Ω

fpn dµ
)1/p(∫

Ω

(f∗n)(p−1)p′ dµ
)1/p′

= ‖fn‖p‖f∗n‖p−1
p ,



MARTINGALES AND HARMONIC ANALYSIS 13

since (p− 1)p′ = p and 1/p′ = (p− 1)/p. So altogether, we have

‖f∗n‖pp ≤ p′‖fn‖p‖f∗n‖p−1
p .

If ‖f∗n‖p <∞, we just divide both sides by ‖f∗n‖p−1
p , and get what we wanted.

To check the finiteness, observe that

f∗n = max
0≤k≤n

fk ≤
n∑
k=0

fk,

thus

‖f∗n‖p ≤
n∑
k=0

‖fk‖p ≤
n∑
k=0

‖fn‖p = (1 + n)‖fn‖p <∞.

Note that the last, easy estimate is of the same form as the bound ‖f∗n‖p ≤ p′‖fn‖p that we
wanted, but with a bad constant 1 + n, the length of the martingale, instead of p′. It would be
impossible to get anything useful for infinite martingales by passing to a limit in this inequality.

2.15. Convergence of martingales to the reverse direction. We have seen that if (Fj)j∈Z
is a filtration with σ(

⋃
j∈Z Fj) = F∞ = F , then for all f ∈ Lp(F , µ), p ∈ (1,∞), there holds

E[f |Fj ]→ f when j →∞, both in the Lp norm and pointwise a.e. What about j → −∞?
Let make the following additional assumption:

∀F ∈ F−∞ :=
⋂
j∈Z

Fj : µ(F ) ∈ {0,∞}.

Then for all f ∈ Lp(F , µ), p ∈ (1,∞), there holds E[f |Fj ] → 0 when j → −∞, both in the Lp
norm and pointwise a.e.

Proof. At a.e. point ω ∈ Ω, the sequence (E[f |Fj ])j∈Z is bounded from above and from below by
the numbers Mf and −Mf . In particular, it has finite pointwise lim sup and lim inf as j → −∞;
let the first one be denoted by g. A basic observation is that

g = lim sup
j→−∞

E[f |Fj ] = lim sup
i≥j→−∞

E[f |Fj ]

can be computed by restricting to the tail j ≤ i for any fixed i ∈ Z. In particular, as the upper
limit of Fi-measurable functions, g itself is Fi-measurable. Since this is true for all i ∈ Z, the
function g is in fact (

⋂
j∈Z Fj)-measurable.

In particular, for all ε > 0 there holds µ({|g| > ε}) ∈ {0,∞}. The latter possibility cannot
hold, since |g| ≤Mf ∈ Lp(F , µ), and hence µ({|g| > ε}) ≤ ε−p‖Mf‖pp <∞. Thus µ({g 6= 0}) =

µ
(⋃∞

n=1{|g| > n−1}
)

= 0, and therefore g = 0 a.e.
A similar argument shows that also lim infj→−∞ E[f |Fj ] = 0, so in fact there exists the point-

wise limit limj→−∞ E[f |Fj ] = 0. By the dominated convergence theorem (the dominating function
being Mf) it follows that the convergence also takes places in the Lp norm. �

By combining the convergence results of this section, the following representation of a function
in terms of its martingale differences is obtained:

2.16. Theorem. Let (Ω,F , µ) be a measure space and (Fj)j∈Z its filtration, such that the spaces
(Ω,Fj , µ) are σ-finite. Let, in addition,

σ
( ⋃
j∈Z

Fj

)
= F , ∀F ∈

⋂
j∈Z

Fj : µ(F ) ∈ {0,∞}.

Then for all f ∈ Lp(F , µ), p ∈ (1,∞), there holds

f =
∞∑

j=−∞

(
E[f |Fj ]− E[f |Fj−1]

)
,

where the convergence takes place both in the Lp-norm and pointwise a.e.
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Proof. By using the obtained convergence results and writing out the difference as a telescopic
sum, it follows that

f = f − 0 = lim
n→+∞

E[f |Fn]− lim
m→−∞

E[f |Fm] = lim
n→+∞
m→−∞

n∑
j=m+1

(
E[f |Fj ]− E[f |Fj−1]

)
,

and the existence of the limit on the right is, by definition, the same as the convergence of the
series in the assertion. �

2.17. Exercises. Many of the exercises deal with applications of martingale theory and especially
Doob’s maximal inequality to classical analysis.

1. Prove that a filtration indexed by a subset I ⊂ Z of the integers Z and a martingale
adapted to it can be extended so as to be indexed by all of Z. More precisely: Let (Fi)i∈I
be a filtration and (fi)i∈I a martingale adapted to it, where I ⊂ Z. Define Fi and fi for
i ∈ Z \ I in such a way that also (Fi)i∈Z is a filtration and (fi)i∈Z a martingale adapted
to it.

2. With the help of Doob’s inequality, derive Hardy’s inequality : for all 0 ≤ f ∈ Lp(R+)
(where R+ = (0,∞) is equipped with the Borel σ-algebra and the Lebesgue measure)[ ∫ ∞

0

( 1
x

∫ x

0

f(y) dy
)p

dx
]1/p

≤ p′
[ ∫ ∞

0

f(x)p dx
]1/p

.

(Hint: For a fixed δ > 0, consider the filtration (Fn)n∈Z− , where

Fn := σ
({

(0, |n|δ], (kδ, (k + 1)δ] : |n| ≤ k ∈ Z
})
.

Take the limit δ ↘ 0 in the end.)
Notice that it is possible (and not particularly hard) to prove Hardy’s inequality also

by other methods, but the point of the exercise is nevertheless to derive it as a corollary
of Doob’s inequality.

3. Show that the constant p′ is optimal in Hardy’s inequality, and hence also in Doob’s
inequality. (Hint: investigate e.g. the functions f(x) = 1I(x) · xα, where I ⊂ R+ is an
appropriate subinterval and α ∈ R.)

4. Denote the collections of the usual dyadic intervals of R by Dk := {2−k[j, j + 1) : j ∈ Z},
where k ∈ Z. For all β = (βk)k∈Z ∈ {0, 1}Z, define the collection of shifted dyadic intervals
by

Dβ
k := Dk +

∑
j>k

βj2−j :=
{
I +

∑
j>k

βj2−j : I ∈ Dk

}
,

where I + c := [a+ c, b+ c) if I = [a, b). Note that D0
k = Dk, where 0 stands for the zero

sequence. Denote the corresponding σ-algebras by F β
k := σ(Dβ

k ). Show that (F β
k )k∈Z is

a filtration for all β ∈ {0, 1}Z.
5. Keeping the notations of the previous exercise, define the collection of all (shifted) dyadic

intervals Dβ :=
⋃
k∈Z Dβ

k . Consider the particular sequence β ∈ {0, 1}Z, where βk = 0 if k
is even and βk = 1 if k is odd. Prove that, with some constant C ∈ (0,∞), the following
assertion holds: If J ⊂ R is any finite subinterval, there exists either I ∈ D0 or I ∈ Dβ ,
such that J ⊆ I and |I| ≤ C|J |. (Hint: it might help to sketch a picture.)

6. For f ∈ L1
loc(R), its Hardy–Littlewood maximal function is defined by

MHLf(x) := sup
I3x

1
|I|

∫
I

|f(y)|dy,

where the supremum is over all finite subintervals I ⊂ R which contain x. (Usually
this is denoted simply by M but now the subscript HL is used to distinguish this from
Doob’s maximal function.) Use Doob’s inequality to derive the Hardy–Littlewood maximal
inequality

‖MHLf‖p ≤ Cp‖f‖p, p ∈ (1,∞].
(Hint: Use the result of the previous exercise to show that MHLf is pointwise dominated
by the sum of two Doob’s maximal functions related to different filtrations.)
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7. For a sequence of functions ~f = (fk)k∈Z (not assumed to be adapted), consider the norm

‖~f‖Lp(`q) :=
∥∥∥(∑

k∈Z
|fk|q

)1/q∥∥∥
Lp
.

Recall how to prove that ‖f‖Lp = sup{
∫
fg dµ : ‖g‖Lp′ ≤ 1}, and use the same ideas to

show that

‖~f‖Lp(`q) = sup
{∫ ∑

k∈Z
fkgk dµ : ‖~g‖Lp′ (`q′ ) ≤ 1

}
.

8. Prove that Doob’s inequality (in Lp
′
) is equivalent to the following estimate:

(∗)
∥∥∥∑
k∈Z

E(fk|Fk)
∥∥∥
p
≤ p
∥∥∥∑
k∈Z

fk

∥∥∥
p
, p ∈ [1,∞).

for all nonnegative sequences of functions fk ∈ Lp(F ). That is, derive (∗) from Doob’s
inequality, and conversely, give a new proof of Doob’s inequality by assuming (∗). (Hint:
use Exercise 7. You can use the result ‘as a black box’ even if you did not do that Exercise.)

9. Prove the estimate (∗) directly (without using Doob’s inequality) for p = 2. (Hint: multi-
ply out the square in the L2 norm.)

2.18. References. Doob’s inequality appeared for the first time in Doob’s classic book [4]. We
have followed the ideas of the original proof, which is also commonly done in most more recent
books on the topic (e.g. [16]). A completely different proof is found in Burkholder’s summer school
lectures [3] and in the previous edition of these lecture notes from 2008. The idea for Exercises 2
and 3 is also from Burkholder [3], and Exercises 5 and 6 from Mei [10].

3. Martingale transforms and Burkholder’s inequality

3.1. Martingale differences. Let us for simplicity consider a finite martingale (fk)nk=0 adapted
to a filtration (Fk)nk=0. We also define f−1 := 0. The difference sequence of f is given by

dk := fk − fk−1,

and it has the two following properties:
• dk ∈ L0(Fk); indeed, fk ∈ L0(Fk) and fk−1 ∈ L0(Fk−1) ⊆ L0(Fk).
• E[dk|Fk−1] = 0 for k = 1, . . . , n; indeed,

E[dk|Fk−1] = E[fk|Fk−1]− E[fk−1|Fk−1] = fk−1 − fk−1 = 0.

Let us call any sequence (dk)nk=0 with these properties a martingale difference sequence.

3.2. Lemma. There is a one-to-one correspondence between martingales (fk)nk=0 and martingale
difference sequences (dk)nk=0, given by

dk = fk − fk−1, fk =
n∑
j=0

dj .

Proof. We already saw that a martingale defined a martingale difference sequence. Let then a
difference sequence dk be given, and define fk by the above formula. Since dj ∈ L0(Fj) ⊆ L0(Fk)
for j ≤ k, we see that fk ∈ L0(Fk). To check the martingale property, observe that

E[fk|Fk−1] =
k−1∑
j=0

E[dj |Fk−1] + E[dk|Fk−1] =
k−1∑
j=0

dj + 0 = fk−1,

using again that dj ∈ L0(Fj) ⊆ L0(Fk−1) and the martingale difference property to the last
term. �
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3.3. Martingale transform. A sequence (vk)nk=0 is called predictable (or previsible) if v0 ∈
L0(F0) and vk ∈ L0(Fk−1) for k ≥ 1.

The transform of a martingale f by a predictable sequence v is the sequence v∗f = ((v∗f)k)nk=0

defined by

(v ∗ f)k :=
k∑
j=0

vjdj ,

where dj is the difference sequence of f . We immediately check that

E[vjdj |Fj−1] = vjE[dj |Fj−1] = vj · 0 = 0,

so that vjdj is again a martingale difference sequence, and therefore v ∗ f is a martingale. This
justifies the name ‘martingale transform’.

Possible interpretation in applications: A martingale is a model of a ‘fair gamble’ between two
players: fk represents your accumulated winnings at time k, so that dk = fk − fk−1 represents
your winning (and thus your opponents loss) on the kth round of the game. Since the game is fair,
the expectation of your kth-rounf winning, conditioned on the history Fk−1 up till time k − 1, is
E[dk|Fk−1] = 0.

Now suppose you can increase or decrease your stakes at the game, if you believe that you are
more or less likely to win on the next round. So your winning or loss will now be vkdk, where vk
is your chosen stake, and dk is the winning with a unit stake. But again, by fairness, you need to
decide about your stakes for the kth round before the kth round is played, i.e., only based on the
information Fk−1 that you have at time k− 1. This means that vk must be predictable, and thus
the transformed game v ∗ f is still a martingale, i.e., a fair game.

3.4. Burkholder’s inequality for martingale transforms. On a mathematical level, the fol-
lowing is a basic estimate about the behaviour of martingale transforms in Lp spaces:

3.5. Theorem (Burkholder). Let (fk)nk=0 be an Lp-martingale, where p ∈ (1,∞), and (vk)nk=0 a
bounded predictable sequence with ‖vk‖∞ ≤ 1. Then

‖(v ∗ f)n‖p ≤ βp‖fn‖p

for some finite constant βp that depends only on p.

It is known that the best (smallest) constant in this inequality is βp = max{p−1, 1/(p−1)}. It
is quite remarkable that this constant is known, since it is usually very difficult to find the exact
constants in more complicated inequalities of Analysis. In fact, Burkholder’s inequality is one of
the most important tools for finding the optimal constants also for many other inequalities, by
showing that other operations can be interpreted as martingale transforms.

We will now give a proof of this inequality, which does not provide the optimal constant.

3.6. General observations. Burkholder’s inequality is actually a bound for the norm of some
linear operators acting on fn ∈ Lp(Fn). Namely, observe that

(v ∗ f)n =
n∑
k=0

vkdk = v0f0 +
n∑
k=1

vk(fk − fk−1)

= v0E[fn|F0] +
n∑
k=1

vk(E[fn|Fk]− E[fn|Fk−1]) = Tv(fn),

where it is easy to check that Tv is linear. This places at our disposal some tools from the general
theory of linear operators on Lp spaces:

Interpolation. The Marcinkiewicz interpolation theorem says (in particular, and even slightly
more) that if a linear operator T is bounded on Lp0 and on Lp1 for two exponents p0 < p1,
then it is also bounded on Lp for all intermediate exponents p ∈ (p0, p1).
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Duality. It is not difficult to check that Tv is seld-adjoint in the sense that∫
Tvf · g dµ =

∫
f · Tvg dµ.

Thus, if Burkholder’s inequality holds in Lp, then we also find for the dual exponent p′ that

‖Tvf‖p′ = sup
{∫

Tvf · g dµ : ‖g‖p ≤ 1
}

= sup
{∫

f · Tvg dµ : ‖g‖p ≤ 1
}

≤ sup
{
‖f‖p′‖Tvg‖p dµ : ‖g‖p ≤ 1

}
≤ sup

{
‖f‖p′βp‖g‖p dµ : ‖g‖p ≤ 1

}
= βp‖f‖p′ ,

and thus βp ≤ βp′ . By reversing the roles of p and p′ we see that also βp′ ≤ βp, so in fact βp = βp′ .

3.7. Strategy for the proof. A combination of interpolation and duality shows that it is enough
to prove Burkholder’s inequality, for example, just for exponents of the form p = 2k, k = 1, 2, . . ..
Indeed, interpolation shows that we then have the estimate for all p ∈ [2,∞), and duality shows
that we have it for all p ∈ (1, 2].

The case p = 2 (with β2 = 1) follows from simple orthogonality considerations, and is left as
an exercise. The other powers of 2 will be obtained by induction from the following:

3.8. Proposition. Suppose that Burkholder’s inequality holds for some p ∈ (1,∞). Then it also
holds for the exponent 2p.

We start the proof by observing that

‖g‖22p = ‖g2‖p.

We apply this to g = (v ∗ f)n, and expand

(v ∗ f)2
n =

( n∑
k=0

vkdk

)2

=
n∑
k=0

v2
kd

2
k + 2

n∑
k=0

k−1∑
j=0

vjdjvkdk =
n∑
k=0

v2
kd

2
k + 2

n∑
k=0

(v ∗ f)k−1vkdk,

thus

‖(v ∗ f)2
n‖p ≤

∥∥∥ n∑
k=0

v2
kd

2
k

∥∥∥
p

+ 2
∥∥∥ n∑
k=0

(v ∗ f)k−1vkdk

∥∥∥
p
.

We will next show that:

3.9. Lemma. ∥∥∥ n∑
k=0

(v ∗ f)k−1vkdk

∥∥∥
p
≤ 8βp‖(v ∗ f)n‖2p‖fn‖2p.

Proof. The idea is to apply the induction hypothesis, observing that rk := (v ∗ f)k−1vk is again
predictable. The problem is that it is not necessarily bounded. To overcome this, we first write

(v ∗ f)k−1vk =
(v ∗ f)k−1vk
(v ∗ f)∗k−1

· (v ∗ f)∗k−1 =: uk · (v ∗ f)∗k−1, (v ∗ f)k−1 := max
j≤k−1

|(v ∗ f)j |.

where uk is both predictable and bounded by one, and (v ∗ f)∗k−1 is increasing in k. We observe
that ((v∗f)∗k−1dk)nk=1 is also a martingale difference sequence, so that we can apply the assumed
Burkholder inequality to the result that∥∥∥ n∑

k=0

(v ∗ f)k−1vkdk

∥∥∥
p

=
∥∥∥ n∑
k=0

uk(v ∗ f)∗k−1dk

∥∥∥
p
≤ βp

∥∥∥ n∑
k=0

(v ∗ f)∗k−1dk

∥∥∥
p
.

We then investigate the function on the right pointwise, using a partial summation argument:
n∑
k=0

(v ∗ f)∗k−1dk =
n∑
k=0

(v ∗ f)∗k−1(fk − fk−1) =
n∑
k=0

(v ∗ f)∗k−1fk −
n−1∑
k=−1

(v ∗ f)∗kfk

= (v ∗ f)∗n−1fn +
n−1∑
k=0

((v ∗ f)∗k−1 − (v ∗ f)∗k)fk − (v ∗ f)∗−1f0,
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where the last term is actually zero by our convention about the martingale at −1. We estimate
the absolute values, recalling that (v∗f)∗k is increasing in k, to find that

∣∣∣ n∑
k=0

(v ∗ f)∗k−1dk

∣∣∣ ≤ (v ∗ f)∗n−1|fn|+
n−1∑
k=0

((v ∗ f)∗k − (v∗f)∗k−1)|fk|

≤ (v ∗ f)∗n−1f
∗
n +

n−1∑
k=0

((v ∗ f)∗k − (v∗f)∗k−1)f∗n

≤ (v ∗ f)∗n−1f
∗
n + (v ∗ f)∗n−1f

∗
n ≤ 2(v ∗ f)∗nf

∗
n,

where we collapsed the telescopic summation. The Lp norm of the right side is now easy to
estimate:

‖2(v ∗ f)∗nf
∗
n‖p ≤ 2‖(v∗f)∗n‖2p‖f∗n‖2p ≤ 2((2p)′)2‖(v ∗ f)n‖2p‖fn‖2p ≤ 8‖(v ∗ f)n‖2p‖fn‖2p,

where we used Doob’s inequality, and the fact that 2p ≥ 2, hence (2p)′ ≤ 2. �

We return to the estimation of ‖(v ∗ f)2
n‖p. So far we showed that

‖(v ∗ f)2
n‖p ≤

∥∥∥ n∑
k=0

v2
kd

2
k

∥∥∥
p

+ 2 · 8βp‖(v ∗ f)n‖p‖fn‖p.

To bound the first term, we first recall that |vk| ≤ 1, and then follow some of the earlier steps in
the opposite order, writing

n∑
k=0

v2
kd

2
k ≤

n∑
k=0

d2
k =

( n∑
k=0

dk

)2

− 2
n∑
k=0

k−1∑
j=0

djdk = f2
n − 2

n∑
k=0

fk−1dk.

Thus ∥∥∥ n∑
k=0

v2
kd

2
k

∥∥∥
p
≤ ‖f2

n‖p + 2
∥∥∥ n∑
k=0

fk−1dk

∥∥∥
p
,

where ‖f2
n‖p = ‖fn‖22p. The second term is exactly as in Lemma 3.9, but with vk ≡ 1. Thus an

application of that Lemma shows that∥∥∥ n∑
k=0

fk−1dk

∥∥∥
p
≤ 8βp‖fn‖22p.

Altogether, we have proven that

‖(v ∗ f)n‖22p = ‖(v ∗ f)2
n‖p ≤ ‖fn‖22p + 16βp‖fn‖22p + 16βp‖(v ∗ f)n‖2p‖fn‖2p.

Let us divide both sides by ‖fn‖22p, and denote

X :=
‖(v ∗ f)n‖2p
‖fn‖2p

.

This gives

X2 ≤ 1 + 16βp + 16βpX,

or equivalently

(X − 8βp)2 = X2 − 2 · 8βpX + (8βp)2 ≤ 1 + 2 · 8βp + (8βp)2 = (1 + 8βp)2.

Thus X ≤ 1 + 16βp, and hence β2p ≤ 1 + 16βp. This completes the proof of Proposition 3.8.
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3.10. Exercises.
1. Give a short proof of Burkholder’s inequality for p = 2 (Hint: orthogonality of martingale

differences in L2.)
2. Prove the following Stein’s inequality : For any sequence of functions fk ∈ Lp(F ), where
p ∈ (1,∞), we have

‖(E[fk|Fk])k∈Z‖Lp(`2) ≤ Cp‖(fk)k∈Z‖Lp(`2).

(Hint: for p ≥ 2, use duality in Lp/2 and Doob’s inequality. For p < 2, use the previous
case and duality in Lp(`2).)

3. The square function of a martingale f with difference sequence (dk)nk=0 is defined by

Snf :=
( n∑
k=0

d2
k

)1/2

.

Check that ‖Snf‖2 = ‖fn‖2, and show that if ‖fn‖p ≤ cp‖Snf‖p for some p ∈ (1,∞),
then we have both inequalities

1
c2p
‖fn‖2p ≤ ‖Snf‖2p ≤ c2p‖fn‖2p.

(Hint: Similar ideas as in Proposition 3.8; write f2
n − (Snf)2 as a sum of martingale

differences to prove that ‖f2
n − (Snf)2‖p ≤ Cp‖fn‖2p‖Snf‖2p.)

4. Complete the proof that

(3.11)
1
cp
‖fn‖p ≤ ‖Snf‖p ≤ cp‖fn‖p

for all p ∈ (1,∞) by following these hints: From Exercise 3, you get that this double
estimate holds for all p = 2n, n = 1, 2, . . .. Then, show that if the left inequality holds
for some p, then the right inequality holds for p′, and the other way round. (Here you
might need Stein’s inequality.) Thus you also obtain the double estimate for all p such
that p′ = 2n, n = 1, 2, . . .. In particular, you now have that fn 7→ Snf is bounded (i.e.,
‖Snf‖p ≤ cp‖fn‖p) for all p with max{p, p′} = 2n, n = 1, 2, . . .. Observe that fn 7→ Snf
is a quasi-linear operator: Sn(f + g) ≤ Snf + Sng for any martingales f, g. Thus the
Marcinkiewicz interpolation theorem shows that the Lp-boundedness of Sn (i.e., the right
inequality ‖Snf‖p ≤ cp‖fn‖p) extends to all intermediate values p ∈ (1,∞). (You can take
this interpolation argument for granted as a black box.) Finally, from the duality already
mentioned, you get that also the left estimate ‖fn‖p ≤ cn‖Snf‖p holds for all p ∈ (1,∞).

5. Derive Burkholder’s inequality from the double inequality (3.11).

3.12. References. Burkholder’s inequality was originally proved in [1]. (It is only contained as
part of the proof of Theorem 9 in [1], not as a separate result!) The optimal constant was obtained
in [2]. A more detailed explanation of how Burkholder actually found this amazing result is given
in his summer school lectures [3].

4. Up-crossings and convergence of martingales

We have seen that if (fn)n∈Z is the martingale generated by a function f ∈ Lp(F∞), p ∈ [1,∞),
then fn → f both in Lp and almost everywhere. We now want to look at the following related
questions:

• What can be said about the convergence of fn as n→∞ if we are only given a martingale
(fn)n∈Z, not necessarily generated by a function as above?

• What about the convergence of fn as n→ −∞?
• Assuming that we have positive answers to the first two questions, with limits f∞ and
f−∞, what more can be said about the mode of convergence of the series

(4.1)
∞∑

k=−∞

dk = lim
n→+∞
m→−∞

n∑
k=m+1

dk = lim
n→+∞
m→−∞

(fn − fm) = f∞ − f−∞ ?
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In the last point, we have in mind the so-called unconditional convergence in the space Lp. This
is defined as follows in a general Banach space (a complete normed space) X.

4.2. Unconditional convergence. A series
∑∞
k=1 xk, with xk ∈ X, is said to converge to x ∈ X

if limn→∞
∑n
k=1 xk = x. It is said to converge unconditionally if

∞∑
k=1

xσ(k)

converges for every permutation (bijection) σ of the positive integers Z+.
We will discuss the unconditional convergence of martingale differences at the end of the chapter.

4.3. Up-crossings of a martingale. This is our main tool for the analysis of martingale con-
vergence. Fix some interval (a, b) and a martingale (fn)n∈Z. By an up-crossing we mean a pair
of indices (σ, τ) with such that fσ < a < b < fτ , and τ > σ is the minimal number with this
property.

Let
um,n(ω) := number of up-crossings of (fk(ω))nk=m.

To be more formal, let σ0 := τ0 := m, and then

σj := min{k ≥ τj−1 : fk < a}, τj := min{k ≥ σj : fk > b}, j ≥ 1,

and
um,n := max{J : τJ ≤ n}.

Note that both σj , τj : Ω → {m,m + 1, . . . ,∞} are stopping times. (Recall that % : Ω →
Z∪ {−∞,+∞} is a stopping time if {% ≤ k} ∈ Fk for all k ∈ Z.) Indeed, if we already know this
for τj−1, we observe that

{σj ≤ k} = {τj−1 ≤ k, min
i:τj−1≤i≤k

fi < a}

=
k⋃

h=m

{τj−1 = h} ∩ { min
i:h≤i≤k

fi < a},

which belongs to Fk, since {τj−1 = h} ∈ Fh ⊆ Fk, and each fi above belongs to L0(Fi) ⊆
L0(Fk). Hence also σj is a stopping time. From this we similarly obtain that τj is a stopping
time, and we can proceed by induction.

4.4. A martingale transform that counts the up-crossings. We now define a martingale
transform of (fk)k∈Z in such a way that we only want to consider those differences dk that take
place in an up-crossing, i.e., σj < k ≤ τj for some j. Namely, we set

vk :=
∞∑
j=1

1{σj<k≤τj},

which is predictable, since

{σj < k ≤ τj} = {σj ≤ k − 1} ∩ {τj > k − 1} = {σj ≤ k − 1} ∩ {τj ≤ k − 1}C ∈ Fk−1

by the fact that σj and τj are stoppping times, and also vk(ω) ∈ {0, 1}, since at most one of the
conditions σj(ω) < k ≤ τj(ω) holds at any given point ω ∈ Ω.

Now consider the transform of f by v given by

gn := (v ∗ f)n :=
n∑

k=m+1

vkdk, dk := fk − fk−1.

From the definition of vk, we obtain

gn =
∞∑
j=1

∑
k:σj<k≤min(τj ,n)

dk =
J∑
j=1

(fτj − fσj ) +

{
fn − fσJ+1 , if n > σJ+1,

0, else,

where J = um,n is the number of up-crossings between m and n.
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By definition, we have fτj > b and fσj < a; hence

J∑
j=1

(fτj − fσj ) ≥
J∑
j=1

(b− a) = J(b− a) = (b− a)um,n.

Also, it is clear that fn − fσJ+1 ≥ −|fn| − a, and thus altogether we checked that

(4.5) gn ≥ (b− a)um,n − |fn| − |a|.

4.6. Integrating the up-crossings, n → ∞. Next, we want to integrate the pointwise bound
(4.5) over suitable sets A. For this purpose, we impose the following integrability condition: The
ideal

(F 0
m)fk;k≥m := {A ∈ F 0

m : sup
k≥m
‖1Afk‖1 <∞}

should contain a countable cover. For example, this holds if supk∈Z ‖fk‖p <∞ for some p ∈ [1,∞],
since then ‖1Afk‖1 ≤ µ(A)1/p′‖fk‖p, and thus (F 0

m)fk;k≥m = F 0
m, which contains a countable

cover by σ-finiteness.
Note that each term of

gn =
n∑

k=m+1

vk(fk − fk−1)

is integrable over any A ∈ (F 0
m)fk;k≥m (since the functions fk are, and ‖vk‖∞ ≤ 1), and we get∫

A

gn dµ =
n∑

k=m+1

∫
A

vkdk dµ

=
n∑

k=m+1

∫
A

E[vkdk|Fk−1] dµ =
n∑

k=m+1

∫
A

vkE[dk|Fk−1] dµ = 0,

where we used the facts that A ∈ Fm ⊆ Fk−1, vk ∈ L0(Fk−1), and E[dk|Fk−1] = 0 by the
martingale difference property. So integrating (4.5) over A ∈ (Fm)fk;k≥m, we find that

(b− a)
∫
A

um,n dµ ≤
∫
A

(|fn|+ |a|) dµ.

We now let n → ∞. Since um,n is increasing in n, the monotone convergence theorem shows
that um,∞ := limn→∞ um,n satisfies∫

A

um,∞ dµ ≤ 1
b− a

sup
n→∞

∫
A

(|fn|+ |a|) dµ <∞ ∀A ∈ (F 0
m)fk;k≥m.

But this means that um,∞ < ∞ almost everywhere on A ∈ (F 0
m)fk;k≥m, and since we can cover

Ω by countably many such sets, we find that um,∞ <∞ almost everywhere on Ω.

4.7. Pointwise convergence of martingales as n → ∞. Let (fk)k≥m be a martingale for
which (Fm)fk;k≥m defined above contains a countable cover. We claim that in this case

• fn converges to a limit (a priori, maybe ±∞) almost everywhere as n→∞, and
• this limit is actually finite (i.e., a real number) almost everywhere.

The key observation is that the upper and lower limits lim supn→∞ fn and lim infn→∞ fn (allowing
the values ±∞) always exist, and the limit exists if and only if the upper and lower limits are
equal. If they are not equal, then we can always squeeze to rational numbers a < b in between.
Thus,

{ lim
n→∞

fn does not exist} = {lim inf
n→∞

fn < lim sup
n→∞

fn} =
⋃
a,b∈Q
a<b

{lim inf
n→∞

fn < a < b < lim sup
n→∞

fn}.

But, if lim supn→∞ fn > b, it means that there are infinitely many k ≥ m such that fk > b,
and similarly lim infn→∞ fn < a means that fk < a for infinitely many k ≥ m. So, if both
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conditions hold, it means that there are infinitely many up-crossings of (a, b) between m and ∞,
i.e., um,∞ =∞. But this can only happen in a set of measure zero, and therefore

µ( lim
n→∞

fn does not exist) ≤
∑
a,b∈Q
a<b

µ(lim inf
n→∞

fn < a < b < lim sup
n→∞

fn) ≤
∑
a,b∈Q
a<b

0 = 0.

Thus there exists a limit function f∞ := limn→∞ fn. It remains to check that |f∞| <∞ almost
everywhere. To this end, let A ∈ (Fm)fk;k≥m and apply Fatou’s lemma to the result that∫

A

|f∞|dµ =
∫
A

lim
n→∞

|fn|dµ ≤ lim inf
n→∞

∫
A

|fn|dµ ≤ sup
n≥m

∫
A

|fn|dµ <∞,

thus |f∞| < ∞ almost everywhere on A, and then by the countable covering property, almost
everywhere on Ω.

If supn∈Z ‖fn‖p <∞, where p ∈ [1,∞], a similar Fatou-argument shows that

‖f∞‖p ≤ sup
n∈Z
‖fn‖p.

For more trivial reasons, the last estimate is also true for p =∞.

4.8. Recovering fn from f∞. Our next goal is to show that, under some conditions, the original
martingale (fk)k≥m can be recovered from f∞ := limn→∞ fn by

(4.9) fn = E[f∞|Fn].

For this purpose, we strengthen the earlier integrability condition to the requirement that

(F 0
m)f∗ := {A ∈ F 0

m : ‖1Af∗‖1 <∞}

contain a countable cover. Since |fk| ≤ f∗ for each k, it is clear that (F 0
m)f∗ ⊆ (F 0

m)fk;k≥m,
and hence this condition is stronger than the one imposed above to guarantee the existence of the
limit f∞.

Now consider some n ≥ m, and observe that (F 0
n)f∗ ⊇ (F 0

m)f∗ also contains a countable cover.
For any A ∈ (F 0

n)f∗ , we can then apply dominated convergence with the dominating function f∗
to deduce that ∫

A

f∞ dµ =
∫
A

lim
k→∞

fk dµ = lim
k→∞

∫
A

fk dµ = lim
k→∞
k≥n

∫
A

fk dµ,

and here ∫
A

fk dµ =
∫
A

E[fk|Fn] dµ =
∫
A

fn dµ ∀k ≥ n;

thus ∫
A

f∞ dµ =
∫
A

fn dµ ∀A ∈ (F 0
n)f∗ .

Since (F 0
n)f∗ is an ideal containing a countable cover, we deduce from the definition of the con-

ditional expectation that (4.9).

4.10. Example. We show by example that the weaker condition that (F 0
m)fk;k≥m contain a

countable cover, which guarantees the existence of f∞, is not sufficient for (4.9). Indeed, let
Ω = [0, 1) with Lebesgue measure, Fk := σ({2−k[j − 1, j) : j = 1, . . . , 2k}), and fk := 2k · 1[0,2−k)

for k ≥ 0. It is easy to check that this is a martingale, and ‖fk‖1 = 1 for all k ∈ N, so that
condition for the existence of f∞ is clearly satisfied. It is easy to see directly that fn(ω) → 0
pointwise almost everywhere (indeed, in all other points except ω = 0), so that f∞ ≡ 0. But
clearly fn 6= E[f∞|Fn] = 0.

Thus (F 0
0 )f∗ cannot contain a countable cover, and this is also easy to see directly, since

F 0
0 = {∅, [0, 1)}, and f∗(ω) h 1/ω, which is not integrable over [0, 1). So in fact (F 0

0 )f∗ = {∅},
which clearly does not contain any cover of [0, 1).
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4.11. Convergence of fn to f in Lp. Suppose that supn∈Z ‖fn‖p <∞, where p ∈ (1,∞]. Then
by Doob’s inequality, we have ‖f∗‖p < ∞, so that (F 0

m)f∗ = F 0
m contains a countable cover by

σ-finiteness for every m ∈ Z. Thus the pointwise limit

f∞ = lim
n→∞

fn exists, and fn = E[f∞|Fn] ∀n ∈ Z.

Moreover, we have
‖f∞‖p ≤ sup

n
‖fn‖p = sup

n
‖E[f∞|Fn]‖p ≤ ‖f∞‖p,

so in fact
‖f∞‖p = sup

n
‖fn‖p.

This shows that all the information about the martingale fn is actually captured by the limit
function f∞ and the filtration (Fn)n∈Z.

If p ∈ (1,∞), we can further apply the dominated convergence theorem with dominating func-
tion 2f∗ ∈ Lp to see that

lim
n→∞

∫
Ω

|fn − f∞|p dµ→ 0,

i.e., fn → f∞ in the norm of Lp.

4.12. Pointwise convergence of martingales as m → −∞. Our next aim is to investigate
the limit behaviour of fm as m → −∞. Once again, this is done by integrating the pointwise
up-crossing inequality (4.5) over appropriate sets A. Let

F−∞ :=
⋂
n∈Z

Fn.

As an intersection of σ-algebras, this is automatically a σ-algebra. We make the assumption that

(F 0
−∞)fn := {A ∈ F 0

−∞ : ‖1Afn‖1 <∞}

contain a countable cover. Note that this collection is contained in F 0
−∞, so this assumption

requires in particular that F 0
−∞ be σ-finite. Let us stress that this is a very non-trivial assumption;

we will return to this point later. Also note that for k ≤ n and A ∈ F−∞, we have

‖1Afk‖1 = ‖1AE[fn|Fk]‖1 = ‖E[1Afn|Fk]‖1 ≤ ‖1Afn‖1,

so that in fact (F 0
−∞)fn ⊆ (F 0

−∞)fk for all k ≤ n.
As before, this guarantee that everything in (4.5) is integrable over every A ∈ (F 0

−∞)fn , and
we deduce that

0 =
∫
A

gn dµ ≥ (b− a)
∫
A

um,n dµ−
∫
A

(|fn|+ |a|) dµ,

and so∫
A

u−∞,n dµ :=
∫
A

lim
m→∞

um,n dµ = lim
m→∞

∫
A

um,n dµ ≤ 1
b− a

∫
A

(|fn|+ |a|) dµ <∞.

Thus u−∞,n <∞ almost everywhere on each A, and hence on Ω.
By a similar argument as for n→∞, the finiteness of the up-crossings implies the existence of

a pointwise limit, i.e.,

f−∞ := lim
k→−∞

fk exists pointwise almost everywhere.

Recall that fk ∈ L0(Fk) ⊆ L0(Fm) for k ≤ m, and thus

f−∞ := lim
k→−∞

fk = lim
k→−∞
k≤m

fk ∈ L0(Fm) ∀m ≤ n,

thus in fact f−∞ ∈
⋂
m≤n L

0(Fm) = L0(F−∞).
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4.13. Formula for f−∞. We keep working under the same assumptions as in the previous section.
Thus the pointwise limit f−∞ exists. We will show that it is in fact given by the formula

f−∞ = E[fm|F−∞] ∀m ≤ n.

This formula is an immediate consequence of the following lemma, since then for any A ∈ (F 0
−∞)fn ,

we have∫
A

f−∞ dµ = lim
k→−∞
k≤m

∫
A

fk dµ = lim
k→−∞
k≤m

∫
A

E[fm|Fk] dµ = lim
k→−∞
k≤m

∫
A

fm dµ =
∫
A

fm dµ,

which proves the formula by the definition of conditional expectation.

4.14. Lemma. For all A ∈ (F 0
−∞)fn , we have

lim
k→−∞

‖1A(fk − f−∞)‖1 = 0.

Proof. We consider the two new martingales (gk)k≤n and (hk)k≤n given by

gk := E(fn · 1{fn≤R}|Fk), hk := E(fn · 1{|fn|>R}|Fk).

Note that |gn|, |hn| ≤ |fn|, so that (F 0
−∞)fn ⊆ (F 0

−∞)gn ∩ (F 0
−∞)hn . By the previous section, the

pointwise limits

g−∞ := lim
k→−∞

gk, h−∞ := lim
k→−∞

hk exist almost everywhere.

Since fk = gk + hk, we also have f−∞ = g−∞ + h−∞. Also, observe that

‖gk‖∞ = ‖E(fn · 1{fn≤R}|Fk))‖∞ ≤ ‖fn · 1{fn≤R}‖∞ ≤ R,

so that g∗n = supk≤n |gk| ≤ R, and thus each 1Agk, k ≤ n, is dominated by the integrable function
1Ag∗ ≤ 1A ·R, if µ(A) <∞. Thus the dominated convergence theorem implies that

lim
k→−∞

‖1A(gk − g−∞)‖=0.

On the other hand, we have

‖1Ahk‖1 = ‖E(1A · fn · 1{|fn|>R}|Fk)‖1 ≤ ‖fn · 1A∩{|fn|>R}‖1, ∀k ≤ n,

and by Fatou’s lemma also

‖1Ah‖1 =
∫
A

lim
k→∞

|hk|dµ ≤ lim inf
k→∞

∫
A

|hk|dµ ≤ ‖fn · 1A∩{|fn|>R}‖1.

Combining everything, we obtain

lim sup
k→−∞

‖1A(fk − f−∞)‖1 = lim sup
k→−∞

‖1A(gk + hk − g−∞ − h−∞)‖1

≤ lim sup
k→−∞

‖1A(gk − g−∞)‖1 + lim sup
k→−∞

‖1A(hk − h−∞)‖1

≤ 0 + 2 · ‖fn · 1A∩{|fn|>R}‖1,

which holds for any R > 0, so also in the limit as R→∞. Next we observe that fn ·1A∩{|fn|>R} is
dominated by the integrable function fn · 1A, and converges pointwise to zero almost everywhere,
i.e., in all points where |fn| <∞. Thus

lim sup
k→−∞

‖1A(fk − f−∞)‖1 ≤ lim
R→∞

2 · ‖fn · 1A∩{|fn|>R}‖1 = 0.

�
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4.15. Convergence of fm to f−∞ in Lp. We now assume that F−∞ is σ-finite and that
supn∈Z ‖fn‖p < ∞ with p ∈ [1,∞). Thus (F 0

−∞)fn = F 0
−∞ contains a countable cover for

every n, and the previous results apply, i.e.,

lim
m→−∞

fm = f−∞ = E[fn|F−∞] ∀n ∈ Z.

If p ∈ (1,∞), then all fm are dominated by f∗ ∈ Lp, and we obtain from the dominated conver-
gence theorem that limm→−∞ ‖fm − f−∞‖p = 0, i.e., fm → f−∞ in the norm of Lp.

This norm convergence is also true in L1, but needs a somewhat more complicated proof, using
Lemma 4.14: Let A1 ⊆ A2 ⊆ . . . be sets in F 0

−∞ such that
⋃∞
j=1Aj = Ω; they exist by σ-finiteness.

By Lemma 4.14, we have

lim
k→−∞

‖1Aj (fk − f−∞)‖1 = 0 ∀j ∈ Z+.

Thus
lim sup
k→−∞

‖fk − f−∞‖1 ≤ lim sup
k→−∞

‖1Aj (fk − f−∞)‖1 + lim sup
k→−∞

‖1AC
j
(fk − f−∞)‖1

= 0 + lim sup
k→−∞

‖E[1AC
j
fn|Fk]‖1 + ‖E[1AC

j
fn|F−∞]‖1 ≤ 2 · ‖1AC

j
fn‖1,

which holds for every j ∈ Z+, and hence also in the limit as j →∞. But each 1AC
j
fn is dominated

by the integrable function fn, and these functions converge pointwise to zero; hence by dominated
convergence

lim sup
k→−∞

‖fk − f−∞‖1 ≤ 2 · lim
j→∞

‖1AC
j
fn‖1 = 0.

4.16. The case of a “poor” F−∞. We mentioned above that the assumption that F−∞ be
σ-finite is quite non-trivial. Indeed, in our basic example of the dyadic filtration

Fk := σ({2−k[j, j + 1) : j ∈ Z})

of R, it is not difficult to check that

F−∞ =
⋂
k∈Z

Fk = {∅,R, (−∞, 0), [0,∞)},

and hence F 0
−∞ = {∅} clearly does not contain any cover of R.

So in fact we have µ(A) ∈ {0,∞} for all A ∈ F−∞. We already considered this situation in
Section 2.15, and found that

lim
k→−∞
k≤m

fk = 0

both pointwise and in Lp, provided that (fk)k≤m is a martingale with ‖fm‖p <∞.
We summarize the results of this section so far:

4.17. Theorem (Pointwise convergence of martingales, n → ∞). Suppose that (fn)n≥m is a
martingale adapted to (Fn)n≥m. The following assertions hold:

• If (F 0
m)fk;k≥m contains a countable cover, then

f∞ = lim
n→∞

fn exists pointwise almost everywhere.

• If (F 0
m)f∗ contains a countable cover, then

fn = E[f∞|Fn] ∀n ≥ m.

4.18. Theorem (Pointwise convergence of martingales, m → −∞). Suppose that (fm)m≤n is a
martingale adapted to (Fm)m≤n. If (F 0

−∞)fn contains a countable cover, then

f−∞ = lim
n→−∞

fn exists pointwise a.e., and f−∞ = E[fm|F−∞] ∀m ≤ n.

4.19. Theorem (Convergence of Lp martingales). Suppose that (fn)n∈Z is a martingale with
supn∈Z ‖fn‖p <∞, where p ∈ (1,∞). Then the following assertions hold:
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• f∞ = limn→∞ fn exists pointwise a.e. and in Lp, and we have

fn = E[f∞|Fn] ∀n ∈ Z, ‖f∞‖p = sup
n∈Z
‖fn‖p.

• f−∞ = limn→−∞ fn exists pointwise a.e. and in Lp, provided that one of the following
additional conditions holds:
– F−∞ is σ-finite, and in this case f−∞ = E[fn|F−∞] for all n ∈ Z, or
– F−∞ contains only sets of measure 0 or ∞, and in this case f−∞ = 0.

In fact, it can be shown that Ω always splits as Ω = Ωσ ∪ Ω∞, where Ωσ,Ω∞ ∈ F−∞ are
disjoint, and F−∞ ∩ Ωσ is σ-finite on Ωσ, and F−∞ ∩ Ω∞ only contains sets of measure 0 or ∞.
In this way, the above mentioned two cases together actually cover all situations.

4.20. Unconditional convergence. In the remainder of this chapter, we consider the uncondi-
tional convergence of the series

∞∑
k=−∞

dk, dk = fk − fk−1,

where (fk)k∈Z is a martingale with supn∈Z ‖fn‖p < ∞ for some p ∈ (1,∞). So in fact fn =
E[f∞|Fn] for a limit function f∞ ∈ Lp. We first prove two abstract results in an arbitrary Banach
space X. (In our martingale application, we take X = Lp.)

4.21. Proposition. Let
∑∞
k=1 xk be a series in a Banach space. If the series converges uncondi-

tionally, then the value is independent of the order of summation, i.e.,
∞∑
k=1

xσ(k) = x

for a fixed x ∈ X and every permutation σ of Z+.

We first observe:

4.22. Lemma. If σ is any permutation of Z+, then σ(k)→∞ as k →∞.

Proof of the Lemma. Given any n, we need to find an m such that σ(k) > n for all k > m. Since
σ is surjective, we can find some numbers k1, . . . , kn with σ(ki) = i for each i = 1, . . . , n. Let
m := max{k1, . . . , kn}, and consider any k > m, so in particular k /∈ {k1, . . . , kn}. Since σ is
injective, we have σ(k) /∈ {σ(k1), . . . , σ(kn)} = {1, . . . , n}, and thus σ(k) > n. �

Proof of Proposition 4.21. We argue by contradiction. Suppose that there are two permuations
σ, τ with

∞∑
k=1

xσ(k) = x 6= y =
∞∑
k=1

xτ(k)

We construct a third permutation ρ so that
∑∞
k=1 xρ(k) does not converge.

Pick a sequence εk ↓ 0. We will inductively choose natural numbers

0 < m1 < n1 < m2 < n2 < . . . .

Suppose that we have already chosen m1, n1, . . . ,mj , nj . (This is trivial if j = 0; then we haven’t
chosen anything yet.) Choose mj+1 > nj so large that {τ(1), . . . , τ(nj)} ⊆ {σ(1), . . . , σ(mj+1)}
(this condition is empty if j = 0; otherwise, it is possible since σ is surjective), and∥∥∥mj+1∑

k=1

xσ(k) − x
∥∥∥
X
< εj+1.

Next we pick nj+1 so large that {σ(1), . . . , σ(mj+1)} ⊆ {τ(1), . . . , τ(nj+1)}, and∥∥∥ nj+1∑
k=1

xτ(k) − x
∥∥∥
X
< εj+1.
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So now we have

{τ(1), . . . , τ(nj)} ⊆ {σ(1), . . . , σ(mj+1)} ⊆ {τ(1), . . . , τ(nj+1)} → Z+ as j →∞,

since nj+1 →∞, and then also τ(nj+1)→∞, and τ is surjective.
We can inductively choose the values of the permuation ρ so that

{ρ(1), . . . , ρ(mj)} = {σ(1), . . . , σ(mj)} ⊆ {ρ(1), . . . , ρ(nj)} = {τ(1), . . . , τ(nj)} ∀j ∈ Z+.

But then some of the partial sums of
∑∞
k=1 xρ(k), namely,

∑mj
k=1 xρ(k) =

∑mj
k=1 xσ(k), converge to

x, and some others, namely,
∑nj
k=1 xρ(k) =

∑nj
k=1 xτ(k), converge to y. By the uniqueness of the

limit, the full series cannot converge. �

4.23. Proposition (Characterization of unconditionality). Let
∑∞
k=1 xk be a series in a Banach

space. Then the following assertions are equivalent:
•
∑∞
k=1 xk converges unconditionally.

•
∑∞
k=1 δkxk converges for every choice of δk ∈ {0, 1}.

Proof. We only prove “⇐”, and we argue by contradiction. Suppose that there is a permutation
σ so that

∑∞
k=1 xσ(k) does not converge (and hence, is not Cauchy). Then we prove that there is

a choice of δk ∈ {0, 1} so that
∑∞
k=1 δkxk does not converge either.

Fix an ε > 0 so that
∑∞
k=1 xσ(k) fails the Cauchy criterion with ε, namely, there exist arbitrarily

large m < n such that ‖
∑n
k=m xσ(k)‖X ≥ ε.

Again, we first find a sequence of numbers m1 < n1 < m2 < n2 < . . .. Suppose that we
have already chosen m1, n1, . . . ,mj , nj . Now we choose the numbers mj+1 < nj+1 so large that
σ(k) > max{σ(i) : 1 ≤ i ≤ nj} for all k ≥ mj+1, and∥∥∥ nj+1∑

k=mj+1

xσ(k)

∥∥∥
X
≥ ε.

Next, we define

δi :=

{
1, if i = σ(k) for some k ∈ [mj , nj ] and j ∈ Z+,

0, else.
.

Note that since the intervals [mj , nj ] are pairwise disjoint and σ is injective, the first condition can
hold for at most one j ∈ Z+. We now show that

∑∞
i=1 δixi is not Cauchy, hence not convergent.

Indeed, consider the partial sum
max{σ(k):k∈[mj ,nj ]}∑
i=min{σ(k):k∈[mj ,nj ]}

δixi =
nj∑

k=mj

xσ(k);

to verify the identity observe the following: δi = 1 if and only if i = σ(k) for some k ∈ [m`, n`],
and some ` ∈ Z+. If ` < j, and h ≤ n` ≤ nj−1, then σ(h) < σ(k) for all k ≥ mj , so this case does
not appear. If ` > j, and h ≥ m` ≥ mj+1, then σ(h) > σ(k) for all k ≤ nj , so this case also does
not appear. This only leaves the possibility that ` = j, and then the identity is clear.

But the sums on the right of the above identity are at least ε in norm; hence so are the sums
on the left. Since these are partial sums of

∑∞
i=1 δixi, the series cannot converge. �

Now we are ready for:

4.24. Theorem (Unconditional convergence of Lp martingales). Let dk = fk−fk−1, where (fn)n∈Z
is a martingale with supn∈Z ‖fn‖p <∞. Then the series

∞∑
k=−∞

dk

converges unconditionally in Lp.
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Proof. We already know that the series converges, hence it satisfies the Cauchy criterion∥∥∥ n∑
k=m

dk

∥∥∥
Lp
→ 0 as m,n→ ±∞,

where we mean that both m,n→∞, or both m,n→ −∞.
Let then δk ∈ {0, 1} be some numbers. In particular, we can view them as predictable (constant)

functions on Ω. Then Burkholder’s inequality shows that∥∥∥ n∑
k=m

δkdk

∥∥∥
Lp
≤ βp

∥∥∥ n∑
k=m

dk

∥∥∥
Lp
→ 0 as m,n→ ±∞,

so also the series
∑∞
k=−∞ δkdk satisfies the Cauchy criterion, and hence is convergent. Since this

holds for every choice of δk ∈ {0, 1}, we see that
∑∞
k=−∞ dk is unconditionally convergent. �

Thanks to this theorem, we are justified to write∑
k∈Z

dk

in place of
∑∞
k=−∞ dk; this notation emphasizes the fact that we sum over all values k ∈ Z, but

the order of summation is not important.

4.25. Exercises.
1. Prove the other direction of Proposition 4.23.
2. Use orthogonality considerations to give another (easier) proof of the following martingale

convergence results in L2: Suppose that (fn)n∈Z is a martingale with supn∈Z ‖fn‖2 <∞.
Then the limits

f−∞ = lim
n→−∞

fn, f∞ = lim
n→∞

fn

exist in the sense of L2 convergence. [Hint: Check first that
∞∑

k=−∞

‖dk‖22 ≤ sup
n∈Z
‖fn‖22

and apply the Cauchy criterion. Use orthogonality!]

4.26. References. We have partly followed the presentation of Williams [16] in proving the mar-
tingale convergence results with the help of the up-crossing technique.

5. Petermichl’s dyadic shift and the Hilbert transform

5.1. Dyadic systems of intervals. We call D a dyadic system (of intervals) if D =
⋃
j∈Z Dj ,

where each Dj is a partition of R consisting of intervals of the form [x, x+ 2−j), and each interval
I ∈ D is a union of two intervals I− and I+ (its left and right halves) from Dj+1. Let us derive a
representation for arbitrary dyadic systems in terms of the standard dyadic system D0 =

⋃
j∈Z D0

j ,
where D0

j = {2−j [k, k + 1) : k ∈ Z}. (This already appeared in Exercise 2.17(4).)
It is easy to see that Dj has to be of the form D0

j + xj for some xj ∈ R. If one adds an integer
multiple of 2−j to xj , the collection D0

j +xj does not change, so one can demand that xj ∈ [0, 2−j).
Then xj is actually the unique end-point of intervals in Dj , which falls on the interval [0, 2−j).
Since this is also an end-point of the intervals in Dj+1, there must hold xj − xj+1 ∈ {0, 2−j−1}.
Let us write βj+1 := 2j+1(xj − xj+1) ∈ {0, 1} so that xj = 2−j−1βj + xj+1, and by iteration

xj =
∑
i>j

2−iβi, β = (βi)i∈Z ∈ {0, 1}Z.

Hence an arbitrary dyadic system is of the form Dβ , where Dβ
j := D0

j +
∑
i>j 2−iβi.

In the sequel we will also need dilated dyadic systems rDβ := {rI : I ∈ Dβ}, where rI = [ra, rb)
if I = [a, b). Note that 2jDβ = Dβ′ for another β′ ∈ {0, 1}Z, so only the dilation factors r ∈ [1, 2)
will be relevant.
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5.2. Dyadic σ-algebras and conditional expectations. Let F β
j := σ(Dβ

j ), and then rF β
j =

σ(rDβ
j ). Let us consider β ∈ {0, 1}Z and r ∈ [1, 2) fixed for the moment, and write simply

Fj := rF β
j and Dj := rDβ

j . Then (Fj)j∈Z is a filtration (Exercise 2.17(4)). Moreover,

σ
( ⋃
j∈Z

Fj

)
= B(R), ∀F ∈

⋂
j∈Z

Fj : |F | ∈ {0,∞},

where B(R) stands for the Borel σ-algebra of R, and |F | for the Lebesgue measure of F ∈ B(R).
For the first property one checks that every open set O ⊆ R is a (necessarily countable) union of
dyadic intervals. For the second, note that if F ∈ Fj \ {∅}, then |F | ≥ r2−j , and this tends to
+∞ as j → −∞.

5.3. Haar functions. Let Lp(R) := Lp(B(R), dx). By Theorem 2.16, it follows that every
f ∈ Lp(R) has the following series representation which converges both pointwise and in the Lp
norm:

f =
∞∑

j=−∞

(
E[f |Fj+1]− E[f |Fj ]

)
=

∞∑
j=−∞

∑
I∈Dj

( 1I−
|I−|

∫
I−

f dx+
1I+
|I+|

∫
I+

f dx− 1I
|I|

∫
I

f dx
)

=
∞∑

j=−∞

∑
I∈Dj

(
1I−

2
|I|

∫
I−

f dx+ 1I+
2
|I|

∫
I+

f dx−
(
1I+ + 1I−

) 1
|I|

{∫
I+

f dx+
∫
I−

f dx
})

=
∞∑

j=−∞

∑
I∈Dj

(
1I−
{ 1
|I|

∫
I−

f dx− 1
|I|

∫
I+

f dx
}

+ 1I+
{ 1
|I|

∫
I+

f dx− 1
|I|

∫
I−

f dx
})

=
∞∑

j=−∞

∑
I∈Dj

(
1I− − 1I+

) 1
|I|

∫ (
1I− − 1I+

)
f dx =

∞∑
j=−∞

∑
I∈Dj

hI

∫
hIf dx,

where the Haar function hI associated to the interval I is defined by

hI := |I|−1/2
(
1I− − 1I+

)
.

Note that
hI(x) = |I|−1/2h

(x− inf I
|I|

)
, h := h[0,1) = 1[0,1/2) − 1[1/2,1).

Let us write 〈hI , f〉 :=
∫
hIf dx. By Burkholder’s inequality with the random signs (Section ??),

it follows that

(∗) β−1‖f‖p ≤
(∫

R
E
∣∣∣ ∞∑
j=−∞

εj
∑
I∈Dj

hI(x)〈hI , f〉
∣∣∣p dx

)1/p

≤ β‖f‖p.

5.4. Petermichl’s dyadic shift. The dyadic shift operator X = Xβ,r associated to the dyadic
system D = rDβ is defined as a modification of the Haar expansion f =

∑∞
−∞

∑
I∈Dj

hI〈hI , f〉:

Xf :=
∞∑

j=−∞

∑
I∈Dj

HI〈hI , f〉, HI := 2−1/2(hI− − hI+) = |I|−1/2
(
1I−−∪I++ − 1I−+∪I+−

)
,

where I−− := (I−)− and so on. (The symbol X is the Cyrillic letter ‘š’ as a reference to the word
‘shift’, which starts with this sound.)

Now there is the question of convergence of the above series and the boundedness of the shift
operator. For I ∈ D , let I∗ be the unique interval I∗ ∈ D such that I∗ ⊃ I and |I∗| = 2|I|. Let
αI := +1 if I = I∗− and αI := −1 if I = I∗+. Then observe that

n∑
j=m

∑
I∈Dj

2−1/2(hI− − hI+)〈hI , f〉 =
n∑

j=m

∑
J∈Dj+1

αJ2−1/2hJ〈hJ∗ , f〉.
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By (∗) of Section 5.3 it follows that∥∥∥ n∑
j=m

∑
I∈Dj

HI〈hI , f〉
∥∥∥
p
≤ β

(∫
R

E
∣∣∣ n∑
j=m

εj
∑

J∈Dj+1

αJ2−1/2hJ(x)〈hJ∗ , f〉
∣∣∣p dx

)1/p

.

Now comes the core trick of the argument! For a fixed x, there is only one non-zero term in the sum
J ∈ Dj+1 for each j — indeed, the one with J 3 x. When this term ξj := αJ2−1/2hJ(x)〈hJ∗ , f〉 is
multiplied by the random sign εj , it does not matter if the ξj itself is positive or negative; in any
case εjξj is a random variable which is equal to −ξj with probability 1

2 and +ξj with probability
1
2 , and it is independent of the other εiξi for i 6= j. Hence the resulting random variable would
have the same distribution if hJ(x) were replaced by |hJ(x)| = |J |−1/21J(x). Thus(∫

R
E
∣∣∣ n∑
j=m

εj
∑

J∈Dj+1

αJ2−1/2hJ(x)〈hJ∗ , f〉
∣∣∣p dx

)1/p

=
(∫

R
E
∣∣∣ n∑
j=m

εj
∑

J∈Dj+1

αJ(2|J |)−1/21J(x)〈hJ∗ , f〉
∣∣∣p dx

)1/p

=
(∫

R
E
∣∣∣ n∑
j=m

εj
∑
I∈Dj

|I|−1/2
(
1I−(x)− 1I+(x)

)
〈hI , f〉

∣∣∣p dx
)1/p

=
(∫

R
E
∣∣∣ n∑
j=m

εj
∑
I∈Dj

hI(x)〈hI , f〉
∣∣∣p dx

)1/p

≤ β
∥∥∥ n∑
j=m

∑
I∈Dj

hI〈hI , f〉
∥∥∥
p
.

Combining everything∥∥∥ n∑
j=m

∑
I∈Dj

HI〈hI , f〉
∥∥∥
p
≤ β2

∥∥∥ n∑
j=m

∑
I∈Dj

hI〈hI , f〉
∥∥∥
p
.

The right side tends to zero as m,n → ∞ or m,n → −∞; hence so does the left side, and thus
by Cauchy’s criterion the series

∑∞
j=−∞

∑
I∈Dj

HI〈hI , f〉 converges in Lp(R), and the limit Xf

satisfies

‖Xf‖p = lim
n→+∞
m→−∞

∥∥∥ n∑
j=m

∑
I∈Dj

HI〈hI , f〉
∥∥∥
p
≤ β2‖f‖p.

5.5. The Hilbert transform. The Hilbert transform is formally the singular integral

“Hf(x) =
1
π

∫ ∞
−∞

1
y
f(x− y) dy, ”

but to make precise sense of the right side one needs to be a bit more careful. Hence one defines
the truncated Hilbert transforms

Hε,Rf(x) :=
1
π

∫
ε<|y|<R

1
y
f(x− y) dy

and, for f ∈ Lp(R),
Hf := lim

ε→0
R→∞

Hε,Rf

if the limits exists in Lp(R).
Simple examples show that, for a general f ∈ Lp(R), this can only happen in the range p ∈

(1,∞). In fact, for f = 1(a,b), there holds

Hε,R1(a,b)(x)→ log
∣∣∣x− a
x− b

∣∣∣
pointwise. In the neighbourhood of the points a, b, the logarithmic singularity belongs to Lp for
all p <∞, but of course not to L∞. As x→∞,

log
∣∣∣x− a
x− b

∣∣∣ = log
∣∣∣1− a/x
1− b/x

∣∣∣ = log(1− a

x
)− log(1− b

x
) =

b− a
x

+O(
1
x2

),
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which is in Lp for all p > 1 but not in L1.

5.6. Invariance considerations. For r ∈ (0,∞), let δr denote the dilation of a function by r,
δrf(x) := f(rx). For h ∈ R, let τhf(x) := f(x+h) be the translation by h. Both these are clearly
bounded operators on all Lp(R) spaces, p ∈ [1,∞].

Simple changes of variables in the defining formula show that

Hε,Rδrf = δrHεr,Rrf, Hε,Rτhf = τhHε,Rf,

and hence, if Hf exists, so do Hδrf and Hτhf , and

Hδrf = δrHf, Hτhf = τhHf.

These properties are referred to as the invariance of H under dilations and translations.
The aim is to prove the existence of Hf for all f ∈ Lp(R) by relating H to the dyadic shift

operators. The basic obstacle is the fact that the X operators are neither translation nor dilation
invariant: If f = hI for a I ∈ D , then Xf = HI , but if f = hJ , where J /∈ D is a slightly
translated or dilated version of I, then Xf has a much more complicated expression.

The idea to overcome this problem is to average over the shifts Xβ,r associated to all translated
and dilated dyadic systems rDβ

5.7. The average dyadic shift operator. Let the space {0, 1}Z be equipped with the probability
measure µ such that the coordinates βj are independent and have probability µ(β = 0) = µ(β =
1) = 1/2. On [1, 2), the measure dr/r will be used; this is the restiction on the mentioned interval
of the invariant measure of the multiplicative group (R+, ·).

We would like to define the average dyadic shift as the following integral:

(∗) 〈X〉f(x) :=
∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)Xβ,rf(x) =
∑
j∈Z

∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)
∑
I∈rDβ

j

HI(x)〈hI , f〉,

but this needs first some justification.
Let Mβ,r denote Doob’s maximal operator related to the filtration (σ(rDβ

j ))j∈Z. Then observe
that

Xβ,r
−m,nf(x) :=

n∑
j=−m

∑
I∈rDβ

j

HI(x)〈hI , f〉 = E[Xβ,rf |σ(rDn+2)](x)− E[Xβ,rf |σ(rD−m+1)](x)

is pointwise dominated by 2Mβ,rf(x) and converges a.e. to Xβ,rf(x) as m,n→∞. It is easy to
see that the above finite sums are measurable with respect to the triplet (x, β, r), and hence so is
the pointwise limit Xβ,rf(x).

To see that (β, r) 7→ Xβ,rf(x) is integrable for a.e. x ∈ R, and to justify the equality in (∗)
above, note that by Jensen’s inequality, Doob’s inequality, and the uniform boundedness of the
operators Xβ,r, there holds∫

R

[ ∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)Mβ,r{Xβ,rf}(x)
]p

dx

≤
∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)
∫

R

[
Mβ,r{Xβ,rf}(x)

]p dx ≤
∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)C‖f‖pp ≤ C‖f‖pp.

In particular, this shows that∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)Mβ,r{Xβ,rf}(x) <∞

for a.e. x ∈ R. So Xβ,r
−m,nf(x) is dominated by the integrable function Mβ,r{Xβ,rf}(x) and

converges to Xβ,rf(x) as m,n → ∞; hence Xβ,rf(x) is integrable and dominated convergence
proves that ∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)Xβ,rf(x) = lim
m,n→∞

∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)Xβ,r
−m,nf(x)



32 TUOMAS HYTÖNEN

which, unravelling the definition of Xβ,r
−m,n, is the same as (∗). Finally, since the right side above

is dominated by
∫

dr/r
∫

dµ(β)Mβ,r{Xβ,rf} ∈ Lp(R), it follows from another application of
dominated convergence that the series in (∗) also converges in the Lp norm.

From the first form in (∗) it follows that

‖〈X〉f‖p ≤
∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)‖Xβ,rf‖p

≤
∫ 2

1

dr
r

∫
{0,1}Z

dµ(β)(p∗ − 1)2‖f‖p = log 2 · (p∗ − 1)2‖f‖p.

5.8. Evaluation of the integral. Next, we would like to obtain a new expression for 〈X〉f in
order to relate it to the Hilbert transform. Observe that

rDβ
j = r2−j(D0

0 +
∞∑
i=1

2−iβj+i).

When each of the numbers βj is independently chosen from {0, 1}, both values having equal
probability, the binary expansion

∑∞
i=1 2−iβj+i is uniformly distributed over [0, 1), and hence∫

{0,1}Z
dµ(β)

∑
I∈rDβ

j

HI(x)〈hI , f〉 =
∫ 1

0

du
∑

I∈r2−j(D0
0+u)

HI(x)〈hI , f〉

=
∫ 1

0

du
∑
k∈Z

Hr2−j([0,1)+k+u)(x)〈hr2−j([0,1)+k+u), f〉

=
∫ ∞
−∞

Hr2−j([0,1)+v)(x)〈hr2−j([0,1)+v), f〉,

where the second step just used the fact that D0
0 = {[0, 1) + k : k ∈ Z}, and in the last one

the order of summation and integration was first exchanged (this is easy to justify thanks to the
support properties) and the new variable v := k + u introduced.

Making the further change of variables t := 2−jr, it follows that

〈X〉f(x) =
∫ ∞

0

dt
t

∫ ∞
−∞

Ht([0,1)+v)(x)〈ht([0,1)+v), f〉dv,

where
∫∞

0
is actually the indefinite integral limm,n→∞

∫ 2m

2−n
. Recall that ht([0,1)+v)(y) = t−1/2h(y/t−

v) with h = h[0,1), and similarly for Ht([0,1)+v). For a fixed t, the integrand above is hence∫ ∞
−∞

t−1/2H
(x
t
− v
)∫ ∞
−∞

t−1/2h
(y
t
− v
)
f(y) dy dv

=
∫ ∞
−∞

1
t

∫ ∞
−∞

H
(x
t
− v
)
h
(y
t
− v
)

dvf(y) dy.

The inner integral is most easily evaluated by recognizing it as the integral of the function
(ξ, η) 7→ H(ξ)h(η) along the straight line containing the point (x/t, y/t) and having slope 1. The
result depends only on u := x/t − y/t and is the piecewise linear function k(u) of this variable,
which takes the values 0,− 1

4 , 0,
3
4 , 0,−

3
4 , 0,

1
4 , 0 at the points −1,− 3

4 , . . . ,
3
4 , 1, interpolates linearly

between them, and vanishes outside of (−1, 1). So

〈X〉f =
∫ ∞

0

kt ∗ f
dt
t

= lim
ε→0
R→∞

∫ R

ε

kt ∗ f
dt
t
,

where the limit exists in Lp(R), and the notations kt(x) := t−1k(t−1x) and

k ∗ f(x) :=
∫ ∞
−∞

k(x− y)f(y) dy =
∫ ∞
−∞

k(y)f(x− y) dy

were used. These notation will also be employed in the sequel. k ∗ f is called the convolution of
k and f .
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5.9. The appearance of the Hilbert transform. Let us evaluate the integral∫ R

ε

kt(x)
dt
t

=
∫ R

ε

k(x/t)
dt
t2

=
1
x

∫ x/ε

x/R

k(u) du =
1
x

[K(x/ε)−K(x/R)], K(x) :=
∫ x

0

k(u) du.

From the fact that k is odd (k(−x) = −k(x)) it follows that K is even (K(−x) = K(x)). Since
k is supported on [−1, 1], its integral K is a constant on the complement, and in fact K(x) = −1/8
for |x| ≥ 1. Write φ(x) := x−1K(x)1[−1,1](x), which is again an odd function. Then

1
x
K
(x
ε

)
=

1
ε

ε

x

(
K
(x
ε

)
1[−1,1]

(x
ε

)
− 1

8
1[−1,1]c

(x
ε

))
= φε(x)− 1

8x
1|x|>ε,

hence
1
x

[K(x/ε)−K(x/R)] = φε(x)− φR(x)− 1
8x

1ε<|x|<R,

and finally ∫ R

ε

kt ∗ f
dt
t

= φε ∗ f − φR ∗ f −
π

8
Hε,Rf.

As ε→ 0, R→∞ this sum converges to a limit in Lp(R), in fact, to 〈X〉f . So to complete the
proof of the existence of the Hilbert transform Hf , it remains to prove that φε ∗ f and φR ∗ f also
converge in Lp(R). In fact, as will be proved below, they converge to zero. Taking this claim for
granted for the moment, it follows that

Hf = lim
ε→0
R→∞

Hε,Rf = − 8
π
〈X〉f

in Lp(R). In particular, H is a bounded operator as a constant multiple of the average of the
bounded operators Xβ,r. In fact, one gets the estimate

‖Hf‖p =
8
π
‖〈X〉f‖p ≤

8
π

log 2 · (p∗ − 1)2‖f‖p,

but this is far from being optimal.
But, as said, it still remains to prove

lim
ε→0

φε ∗ f = lim
R→∞

φR ∗ f = 0.

This will follow from the general results below; it is easy to check that φ satisfies all the required
properties. It is an odd function, which implies

∫
φ(x) dx = 0, and since |k(x)| is bounded by 3/4,

it follows that |K(x)| ≤ 3/4 · |x| and hence x−1K(x) and then φ(x) is bounded. Finally, recall
that φ is supported on [−1, 1].

5.10. Lemma. Suppose that |φ(x)| ≤ C(1+ |x|)−1−δ for some δ > 0. Then |φε∗f(x)| ≤ C ′Mf(x),
where M is the Hardy–Littlewood maximal operator.

Proof. By making simple changes of variables and splitting the integration domain it follows that

|φε ∗ f(x)| =
∣∣∣ ∫ φ(y)f(x− εy) dy

∣∣∣
≤
∫

[−1,1]

C|f(x− εy)|dy +
∞∑
k=0

∫
2k<|y|≤2k+1

C2−k(1+δ)|f(x− εy)|dy

≤ 2C
2ε

∫ x+ε

x−ε
|f(u)|du+

∞∑
k=0

2−kδ
4C

2ε2k+1

∫ x+ε2k+1

x−ε2k+1
|f(u)|du

≤ 2CMf(x) +
∞∑
k=0

2−kδ4CMf(x) = 2C
(

1 +
2

1− 2−δ
)
Mf(x).

�
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5.11. Lemma. If φ ∈ Lp′(R) and f ∈ Lp(R) for p ∈ [1,∞), then

lim
R→∞

φR ∗ f = 0

pointwise. If, in addition, |φ(x)| ≤ C(1 + |x|)−1−δ, then the convergence also takes place in Lp(R)
if p ∈ (1,∞)

Proof. By Hölder’s inequality,

|φR ∗ f(x)| =
∣∣∣ ∫ φR(y)f(x− y) dy

∣∣∣ ≤ ‖φR‖p′‖f‖p
and a change of variables shows that ‖φR‖p′ = R−1/p‖φ‖p′ → 0 as R→∞.

By the additional assumption and Exercise 2.17(6), |φR ∗ f | ≤ C ′Mf ∈ Lp(R), and hence the
remaining claim follows from dominated convergence. �

5.12. Lemma. Let φ ∈ L1(R), a :=
∫
φ(x) dx and f ∈ Lp(R). Then

lim
ε→0

φε ∗ f = af

in Lp(R) for all p ∈ [1,∞) If, in addition |φ(x)| ≤ C(1 + |x|)−1−δ, then the convergence also takes
place pointwise a.e.

Proof. There holds

φε ∗ f(x)− af(x) =
∫
φ(y)[f(x− εy)− f(x)] dy,

‖φε ∗ f − af‖p ≤
∫
|φ(y)| · ‖f(· − εy)− f‖p dy.

It remains to show that ‖f(·−εy)−f‖p → 0 as ε→ 0, since the claim then follows from dominated
convergence.

Let first g ∈ Cc(R) (continuous with compact support). Then for all 0 < ε ≤ |y|−1, g(·−εy)−g
is supported in a compact set K, bounded pointwise by 2‖g‖∞ (and hence by 2‖g‖∞1K) and
converges pointwise to zero by the definition of continuity. Thus ‖g(·−εy)−g‖p → 0 by dominated
convergence. Such functions are dense in Lp(R) for p ∈ [1,∞). Hence, given f ∈ Lp(R) and δ > 0,
there is g ∈ Cc(R) with ‖f − g‖p < δ, and hence

lim sup
ε→0

‖f(· − εy)− f‖p ≤ lim sup
ε→0

(
‖(f − g)(· − εy)‖p + ‖g(· − εy)‖p + ‖g − f‖p

)
= 2‖f − g‖p < 2δ.

Since this holds for any δ > 0, the conclusion is ‖f(· − εy)− f‖p → 0, and the proof of the norm
convergence is complete.

Concerning pointwise convergence, for g ∈ Cc(R) one has

|φε ∗ g(x)− ag(x)| ≤
∫
|φ(y)| · |g(x− εy)− g(x)|dy,

where the second factor is dominated by 2‖g‖∞ and tends to zero everywhere by continuity. In
general,

lim sup
ε→0

|φε ∗ f − af | ≤ lim sup
ε→0

(
M(f − g) + |φε ∗ g − ag|+ |ag − af |

)
= M(f − g) + |a||f − g|.

Hence

|{lim sup
ε→0

|φε ∗ f − af | > 2δ}| ≤ |{M(f − g) > δ}|+ |{|a||f − g| > δ}| ≤ Cδ−p‖f − g‖pp,

which can be made arbitrarily small. �

Now the proof of

Hf = − 8
π
〈X〉f, ‖Hf‖p ≤ C‖f‖p

is complete.
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5.13. Exercises.

1. Fix x ∈ R and consider the translated dyadic system D0 + x =
⋃
j∈Z(D0

j + x) (note:
same x on every level j), where D0 is the standard system. Find β(x) ∈ {0, 1}Z so that
D0 + x = Dβ(x). Observe that β(x) has a certain special property and conclude that in
general Dβ cannot be represented in the form D0 + x.

2. In R2, consider the dyadic squares Dj := {2−j
(
[0, 1)2 + (k, `)

)
: k, ` ∈ Z}, j ∈ Z. There

is one important difference compared to the one-dimensional case: the squares I ∈ Dj are
now unions of four (rather than two) squares from Dj+1.

Find suitable intermediate partitions Dj+1/2 of R2 so that each I ∈ Di is a union of
two sets from Di+1/2 for all i ∈ 1

2Z := {. . . ,−1,− 1
2 , 0,

1
2 , 1, . . .}. Follow the computation

in Section 5.3 to find a similar representation for f ∈ Lp(R2). What do the Haar functions
look like in this case? (Note: there are a couple of different ways to do this, but it suffices
to provide one. No uniqueness here, your choice!)

3. Let ξ1, . . . , ξn ∈ C. Consider the function F : Rn → C, (tk)nk=1 7→
∑n
k=1 tkξk. Prove

that, on the unit cube [−1, 1]n, |F (t)| attains its greatest value in one of the corners,
t ∈ {−1, 1}n. (Hint: Write the numbers 1

2 (λk + 1) ∈ [0, 1] with their binary expansion,
1
2 (λk + 1) =

∑∞
j=1 bkj2

−j , where bkj ∈ {0, 1}. Then notice that bkj = 1
2 (εkj + 1) for

appropriate εkj ∈ {−1, 1}, and it follows that λk =
∑∞
j=1 εkj2

−j .)
4. Let f1, . . . , fn ∈ Lp(R) and g1, . . . , gn ∈ L∞(R). Let ε1, . . . , εn be independent random

signs with P(εk = −1) = P(εk = +1) = 1/2. Prove that∫
R

E
∣∣∣ n∑
k=1

εkgk(x)fk(x)
∣∣∣p dx ≤ max

1≤k≤n
‖gk‖p∞

∫
R

E
∣∣∣ n∑
k=1

εkfk(x)
∣∣∣p dx.

(Hint: use the previous exercise for each x ∈ R and a similar trick as in 5.4.)
5. Let f ∈ Lp(R), p ∈ (1,∞), and Habf be its truncated Hilbert transform. Consider the

limit where a, b→ 0 in such a way that a ≤ b ≤ 2a. Prove that |Habf | ≤ CMf for all such
a, b, where M is the Hardy–Littlewood maximal operator. Show that Habf → 0 pointwise
a.e. in the considered limit. (Hint: prove the pointwise limit for continuous functions first
and obtain the general case with the help of density and the pointwise domination by the
maximal function.)

5.14. References. Petermichl’s representation for the Hilbert transform as an average of the
dyadic shifts is from [13]. The proof given here is somewhat different from Petermichl’s original
one, and was first presented in the first edition of this course in 2008 and published in [5]. The
proof of the Lp boundedness of the dyadic shift, and the notation ‘X’, are taken from [12].
Although Petermichl’s representation was here used just to derive the classical Hilbert transform
boundedness on Lp(R), its motivation comes from applications in the estimation of H, or some
new operators derived from it, in more complicated situations like weighted spaces [11].

The Lp boundedness of the Hilbert transform is originally a classical result of M. Riesz [14].
Nowadays, there are many different proofs for this important theorem (which is perhaps most
often handled in the framework of the Calderón–Zygmund theory of singular integrals), and even
several different ways of getting it as a consequence of Burkholder’s inequality. However, most
of the martingale proofs rely on continuous-time notions like stochastic integrals and Brownian
motion and would require more extensive preliminaries.

6. More on dyadic shifts

6.1. Background. In the last couple of years, dyadic shifts have played an important role in the
theory of weighted norm inequalities, which is the topic of another course. Here, we will take
a look into these operators from the point-of-view of martingale theory. A general dyadic shift
of type (m,n) on R (a similar definition could be made on Rd, d > 1, as well) is defined as an
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operator of the form

S =
∑
K∈D

AK , AKf =
∑

I,J∈D; I,J⊆K
|I|=2−m|K|
|J|=2−n|K|

aIJK〈f, hI〉hJ ,

where the constants aIJK satisfy

|aIJK | ≤
√
|I||J |
|K|

.

We observe that Petermichl’s shift X is the special case with

AKf = 〈f, hK〉HK =
1√
2
〈f, hK〉(hK+ − hK−),

so that (m,n) = (0, 1), and

aK,K±,K = ± 1√
2

= ±
√
|K||K±|
|K|

.

In a similar way as the Hilbert transform can be obtained as an average of Petermichl’s shifts on
different dyadic systems, quite general singular integral operators of the form

Tf(x) =
∫

R
K(x, y)f(y) dy

can be obtained as averages of the general dyadic shifts S; the general form of this result was first
discovered in [6].

Now we look at the Lp boundedness of the shifts S.

6.2. Separation of scales. Let N := max{m,n}+ 1. Then we split (formally)

S =
∑
K∈D

AK =
N−1∑
r=0

∑
k∈Z

∑
K∈DkN+r

AK .

The point of the splitting is this: Let r be fixed. If hI appears in AK for some K ∈ DkN+r =: Ak,
then hI is constant of the dyadic intervals of length 1

2 |I| = 2−1−m|K| ≥ 2−N |K| = 2−(k+1)N−r,
so in particular it is constant on all K ′ ∈ D(k+1)N+r = Ak+1, and then on all K ′ ∈ Ak′ for any
k′ > k. Similarly each hJ appearing in AK is constant on all K ′ ∈ Ak′ with k′ > k. On the other
hand, clearly the average of hI and hJ on K, and on all equal or larger intervals is zero. Thus
we are in a position to consider a martingale difference sequence with respect to the filtration
Fk := σ(Ak), k ∈ Z. Note that each K ∈ Ak is the union of finitely many (in fact, 2N ) intervals
K ′ ∈ Ak+1.

6.3. Decoupling: preliminary considerations. ‘Decoupling’ vaguely refers to the replacement
of an object by a new one, which has more independence. A relatively simple form of this was
given by the version of Burkholder’s inequality with the independent random signs εk:∥∥∥∑

k

dk

∥∥∥
p

h
∥∥∥∑

k

εkdk

∥∥∥
p
;

this was enough to get an Lp estimate for Petermichl’s shift X. We are now looking for a somewhat
more elaborate version.

Let us more generally consider a martingale difference sequence dk adapted to Fk as above.
Thus

dk =
∑

K∈Ak−1

1Kdk =
∑

K∈Ak−1

1K
∑
A∈Ak
A⊆K

1Adk,=
∑

K∈Ak−1

1K
∑
A∈Ak
A⊆K

1A〈dk〉A,

where the Fk-measurability of dk means that dk is a constant 〈dk〉A on A ∈ Ak. The martingale
difference property E[dk|Fk−1] = 0 means that∫

K

dk dx =
∑

K′∈Ak

K′⊆K

〈dk〉K′ |K ′| = 0.
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The above dk = dk(x) is a function of x ∈ R. Clearly we could also view it as a function
dk = dk(x, y) of x ∈ R and y in some new space Ω, where the dependence on y is trivial. But next
we would like to replace dk by a ‘decoupled’ version d̃k(x, y), where part of the original dependence
on x is pushed into the new variable y, in such a way that the dependence on x is simpler than
before.

Consider a fixed K ∈ DK first. Let µK be the Lebesgue measure on K divided by |K|. Note
that the functions

1K(x)dk(x)1K(y) =
∑

A,B∈Ak
A,B⊆K

〈dk〉A1A(x)1B(y)

and
1K(x)dk(y)1K(y) =

∑
A,B∈Ak
A,B⊆K

〈dk〉B1A(x)1B(y)

are equally distributed (i.e., take the same values in sets of equal measure).
Now consider two new functions, first

uK(x, y) :=
1
2

(1K(x)dk(x)1K(y) + 1K(x)dk(y)1K(y))

=
∑

A,B∈Ak
A,B⊆K

1
2

(〈dk〉A + 〈dk〉B)1A(x)1B(y)

=
∑
A∈Ak
A⊆K

〈dk〉A1A×A(x, y)

+
∑

A,B∈Ak
A,B⊆K;A<B

1
2

(〈dk〉A + 〈dk〉B)1A×B∪B×A(x, y),

where in the last step we introduced some order among the finite family

{A ∈ Ak : A ⊆ K} = {Ai}I(K)
i=1 ,

and defined A < B if and only if A = Ai, B = Aj , and i < j.
The second new function is

vK(x, y) :=
1
2

(1K(x)dk(x)1K(y)− 1K(x)dk(y)1K(y))

=
∑

A,B∈Ak
A,B⊆K

1
2

(〈dk〉A − 〈dk〉B)1A(x)1B(y)

=
∑

A,B∈Ak
A,B⊆K;A<B

1
2

(〈dk〉A − 〈dk〉B)(1A×B(x, y)− 1B×A(x, y)).

Now clearly

1K(x)dk(x)1K(y) = uK(x, y) + vK(x, y),

1K(x)dk(y)1K(y) = uK(x, y)− vK(x, y),

but the key observation is that this decomposition realizes the second function as a martingale
transform of the first one.

6.4. A new measure space. For each K ∈ Ak−1 and k ∈ Z, let ΩK be the measure space K
equipped with the σ-algebra FK := Ak ∩K and the normalized Lebesgue measure µK = dx/|K|.
We consider the big product measure space

Ω :=
∏
K∈A

ΩK
(
where A :=

⋃
k∈Z

Ak

)
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of sequences y = (yK)K∈A indexed by the (countably many) sets K ∈ A . The product σ-algebra
is defined as

Y := σ(Ỹ ), where Ỹ :=
{ ∗∏
K∈A

AK : AK ∈ FK

}
,

and the ∗ in the product means that only finitely many terms AK are nontrivial, i.e., AK 6= ΩK .
The product measure on (Ω,Y ) is the unique measure µ on Y such that

µ
( ∏
K∈A

AK

)
=
∏
K∈A

µ(AK) ∀
∏
K∈A

AK ∈ Ỹ .

(The existence of such a measure, i.e., the extension of µ form Ỹ to all of Y is a nontrivial result,
but we take it for granted here.)

We now consider the measure space R× Ω. Its points will be denoted by (x, y), where further
y = (yK)K∈A . It is also convenient to split y as y = (y<k, yk, y>k), where

y<k := (yK)K∈S
j<k Aj−1 , yk := (yK)K∈Ak−1 , y>k := (yK)K∈S

j>k Aj−1 .

We also define the related space Ω<k :=
∏
K∈

S
j<k Aj−1

K (Ωk and Ω>k similarly) and the σ-
algebras

Y<k := σ(Ỹ<k), where Ỹ<k :=
{ ∗∏
K∈

S
j<k Aj

AK : AK ∈ FK

}
(Yk and Y>k similarly), where

∏∗ has the same meaning as before. It follows that for every k
there are the splittings Ω = Ω<k × Ωk × Ω>k as well as Y = σ(Y<k × Yk × Y>k). We also have
the partial product measures µ<k, µk, µ>k.

6.5. Filtration on the new measure space. We have

dk(x) = dk(x, y) =
∑

K∈Ak−1

1K(x)dk(x)1K(yK) =
∑

K∈Ak−1

(uK(x, yK) + vK(x, yK))

and

(6.6) d̃k(x, y) :=
∑

K∈Ak−1

1K(x)dk(yK)1K(yK) =
∑

K∈Ak−1

(uK(x, yK)− vK(x, yK));

thus
dk = uk + uk+1/2, d̃k = uk − uk+1/2,

where

uk(x, y) :=
∑

K∈Ak−1

uK(x, yK)

=
∑

K∈Ak−1

[ ∑
A∈Ak
A⊆K

〈dk〉A1A×A(x, yK)

+
∑

A,B∈Ak
A,B⊆K
A<B

1
2

(〈dk〉A + 〈dk〉B)1A×B∪B×A(x, yK)
]

uk+1/2(x, y) :=
∑

K∈Ak−1

vK(x, yK)

=
∑

K∈Ak−1

∑
A,B∈Ak
A,B⊆K
A<B

1
2

(〈dk〉A − 〈dk〉B)(1A×B − 1B×A)(x, yK).

(6.7)

Now, we would like to view (uk)
k∈ 1

2 Z
as a martingale difference sequence on the product measure

space (R × Ω, σ(B × Y ), dx × µ). Although the idea is intuitively simple, it gets notationally
complicated, so let us informally sketch the idea first. The key features are as follows:
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(a) both uk and uk+1/2 are Fk-measurable with respect to x, and Y≤k-measurable (in fact,
even Yk-measurable, but we need an increasing σ-algebra as a function of k for a filtration)
with respect to y.

(b) for every K ∈ Ak−1, the restriction 1K(x)uk(x, y) depends on x and yK “in a symmetric
way”;

(c) as x varies over a Fk−1-measurable set (a union of some K ∈ Ak−1) and y over a Y≤k−1-
measurable set (so that yK for K ∈ Ak−1 must vary over its entire domain K), we have

1
|K|

∫
K

∫
K

uk(x, yK) dxdyK

=
1
|K|

[ ∑
A∈Ak
A⊆K

〈dk〉A|A||A|+
∑

A,B∈Ak
A,B⊆K
A<B

1
2

(〈dk〉A + 〈dk〉B) · 2|A||B|
]

=
1
|K|

∑
A∈Ak
A⊆K

〈dk〉A|A|
∑
B∈Ak
B⊆K

|B| =
∑
A∈Ak
A⊆K

〈dk〉A|A| =
∫
K

dk(x) dx = 0,

(6.8)

since dk itself is a martingale difference;
(d) for (x, yK) on the symmetric sets A×B ∪B×A, the function uk+1/2 takes equal positive

and negative values on two halves of the set, so it averages to zero.
Here is the idea (to be made more precise in a moment): From (a) and (b) it follows that uk+1/2

is measurable with respect to the σ-algebra Uk+1/2 = σ(Fk×Y≤k×Ω>k), while uk is measurable
with respect to a smaller “symmetric part” Uk ⊂ Uk+1/2. By (c), it follows that E[uk|Uk−1/2] = 0
and (d) implies that E[uk+1/2|Uk] = 0.

Now, we want to express this in a systematic way, and we make the following definitions:

Uk :=
{ ⋃
K∈Ak−1

⋃
A,B∈Ak
A,B⊆K

[
A×QAB ×B ∪B ×QAB ×A

]

×
∏

H∈Ak−1
H 6=K

H × Ω>k : QAB ∈ Y<k
}
,

Uk+1/2 := σ(Fk × Y≤k × Ω>k) =
{ ⋃
A∈Ak

A×QA × Ω>k : QA ∈ Y≤k
}

;

(6.9)

These are collections of subsets of R×Ω, and we implicitly use the splitting (x, y) = (x, y<k, yk, y>k),
where moreover yk = (yK ; (yH)H∈Ak−1\{K}). One can check that both Uk and Uk+1/2 are σ-
algebras. By substituting k − 1 in place of k, it follows that

Uk−1/2 :=
{ ⋃
K∈Ak−1

K ×QK × Ωk × Ω>k : QK ∈ Y<k
}
.

Writing Ωk = K ×
∏
H∈Ak−1\{K}H, and taking QAB = QK for all A,B ∈ Ak with A,B ⊆ K,

we see that Uk−1/2 ⊆ Uk. Observing that QAB ×B ×
∏
H∈Ak−1\{K}H ∈ Y≤k for QAB ∈ Yk and

B ∈ FK , K ∈ Ak−1, we see that Uk ⊆ Uk+1/2. Thus (Uk)
k∈ 1

2 Z
is a filtration, and it is easy to

see that uk is Uk-measurable for all k ∈ 1
2Z := {. . . ,− 3

2 ,−1,− 1
2 , 0,

1
2 , 1,

3
2 , . . .}.

6.10. The martingale difference property. It remains to check that E[uk|Uk−1/2] = 0 for all
k ∈ 1

2Z.
Let us first show that E[uk|Uk−1/2] = 0 for all k ∈ Z: We integrate uk over any set of the

form K × QK × Ωk × Ω>k, where K ∈ Ak−1 and QK ∈ Y<k (finite unions of such sets form a
Uk−1/2-ideal which contains a countable cover).∫

K×QK×Ωk×Ω>k

uk(x, y) dxdµ(y) = µ<k(QK)
∫
K×K

uk(x, yK) dx
dyK
|K|

,
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where we used the product-measure structure dµ(y) = dµ<k(y−k) dµk(yk) dµ>k(y>k), and the
fact that 1K(x)uk(x, y) only depends on the coordinate yK of y. In (6.8) we already checked that
the right side is zero, verifying the martingale difference property of uk for k ∈ Z.

It remains to check that E[uk+1/2|Uk] = 0 for k ∈ Z, thus evaluate the integral of uk+1/2 over
any set of the form [A × QAB × B ∪ B × QAB × A] ×

∏
H∈Ak−1\{K}H × Ω>k for A,B ∈ Ak

with A,B ⊆ K ∈ Ak−1 and QAB ∈ Y<k. Using again the product-measure structure and the
dependence of 1K(x)uk+1/2(x, y) only on yK , we find that this integral is equal to

µ<k(QK)
∫
A×B∪B×A

uk+1/2(x, yK) dx
dyK
|K|

,

which is zero, since uk+1/2(x, yK) takes opposite values on the sets A × B and B × A of equal
measure.

Altogether, we have confirmed that:

6.11. Proposition. The functions (uk)
k∈ 1

2 Z
defined in (6.7) form a martingale difference sequence

adapted to the filtration (Uk)
k∈ 1

2 Z
defined in (6.9).

From Burkholder’s inequality we can now derive the following consequence:

6.12. Theorem (Decoupling of martingale differences). Let dk be a martingale difference sequence
adapted to a filtration Fk, where each Fk is generated by a countable collection of atoms Ak. Then

(6.13)
1
βp

∥∥∥∑
k

dk

∥∥∥
Lp(R)

≤
∥∥∥∑

k

ηkd̃k

∥∥∥
Lp(R×Ω)

≤ βp
∥∥∥∑

k

dk

∥∥∥
Lp(R)

,

where the decoupled sequence d̃k is defined in (6.6), Ω is the probability space related to the variable
y = (yk)k∈Z = (yK)K∈A , and the ηk = ±1 are arbitrary signs.

In particular, we also have the estimate

(6.14)
1
βp

∥∥∥∑
k

dk

∥∥∥
Lp(R)

≤
∥∥∥∑

k

εkd̃k

∥∥∥
Lp(R×Ω×Ω′)

≤ βp
∥∥∥∑

k

dk

∥∥∥
Lp(R)

,

where Ω′ is another probability space supporting the independent random signs εk.

Proof. Using the functions uk, uk+1/2, we have∑
k∈Z

ηkd̃k =
1
2

∑
k∈Z

(ηkuk − ηkuk+1/2) =
1
2

∑
k∈ 1

2 Z

ζkuk,
(
ζk = ηk, ζk+1/2 = −ηk ∀k ∈ Z

)
,

∑
k∈Z

dk =
1
2

∑
k∈Z

(uk + uk+1/2) =
1
2

∑
k∈ 1

2 Z

uk.

Since (uk)
k∈ 1

2 Z
is a martingale difference sequence, we see that

∑
k∈ 1

2 Z
ζkuk is the martingale

transform of
∑
k∈ 1

2 Z
uk by the transforming sequence (ζk)

k∈ 1
2 Z

, and since ζ2
k = 1, we see that the

converse holds as well. Thus (6.13) is a direct consequence of Burkholder’s inequality.
The estimate (6.14) follows from (6.13) by taking ηk := εk(ω′) and integrating the pth power

of (6.13) over ω′ ∈ Ω′. �

6.15. Back to dyadic shifts. We now consider a dyadic shift with scales separated, i.e.,

Sf =
∑
k∈Z

∑
K∈DkN+r=:Ak

AKf, AKf =
∑

I,J∈D;I,J⊆K
|I|=2−m|K|
|J|=2−n|K|

aIJK〈f, hI〉hJ ,

where m,n, r ∈∈ {0, 1, . . . , N − 1} are fixed. We can also write

AKf(x, x′) =
1
|K|

∫
K

aK(x, x′)f(x′) dx′,
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where
aK(x, x′) := |K|

∑
I,J∈D;I,J⊆K
|I|=2−m|K|
|J|=2−n|K|

aIJKhI(x′)hJ(x)

satisfies |aK(x, x′)| ≤ 1, thanks to |K||aIJK | ≤
√
|I| · |J | and the scaling of the Haar functions,

|hI | ≤ 1I/
√
|I|.

Let us also denote
D

(N)
K f :=

∑
I∈D;I⊆K
|I|>2−N |K|

〈f, hI〉hI ,

and observe that
f =

∑
K∈A :=

S
k∈Z Ak

D
(N)
K , AKf = AKD

(N)
K f.

Finally, notice that both

ek :=
∑
K∈Ak

AKf, dk :=
∑
K∈Ak

D
(N)
K f,

are martingale difference sequences with respect to the filtration Fk := σ(Ak), which has the form
that we have considered above.

A first application of Theorem 6.12 shows that

‖Sf‖Lp(R) =
∥∥∥∑

k

ek

∥∥∥
Lp(R)

≤ βp
∥∥∥∑

k

εkẽk

∥∥∥
Lp(R×Ω)

,

where

ẽk(x, y) =
∑
K∈Ak

1K(x)AKD
(N)
K f(yK) =

∑
K∈Ak

1K(x)
1
|K|

∫
K

aK(yK , x′)D
(N)
K f(x′) dx′

=
∑
K∈Ak

1K(x)
∫

Ω

aK(yK , y′K)D(N)
K f(y′K) dµ(y′).

Thus

‖Sf‖Lp(R) ≤ βp
∥∥∥∫

Ω

(∑
k

εk
∑
K∈Ak

1K(x)aK(yK , y′K)D(N)
K f(y′K)

)
dµ(y′)

∥∥∥
Lp(R×Ω×Ω′, dx dµ(y) dε)

≤ βp
∫

Ω

∥∥∥∑
k

εk
∑
K∈Ak

1K(x)aK(yK , y′K)D(N)
K f(y′K)

∥∥∥
Lp(R×Ω×Ω′, dx dµ(y) dε)

dµ(y′)

≤ βp
∥∥∥∑

k

εk
∑
K∈Ak

1K(x)aK(yK , y′K)D(N)
K f(y′K)

∥∥∥
Lp(R×Ω×Ω′×Ω, dx dµ(y) dε dµ(y′))

.

Next, we use Fubini’s theorem and consider the Lp integral norm over the other variables for a
fixed x ∈ R. Then the summation over K ∈ Ak disappears, since there is exactly one K = K(k, x)
such that x ∈ K ∈ Ak for every k ∈ Z. Thus the integral is of the form considered in Exercise 4
in Sec. 5.13, and we can use the conclusion of that exercise to remove the functions aK with
‖aK‖∞ ≤ 1:

≤ βp
∥∥∥∑

k

εk
∑
K∈Ak

1K(x)D(N)
K f(y′K)

∥∥∥
Lp(R×Ω′×Ω, dx dε dµ(y′))

= βp

∥∥∥∑
k

εkdk

∥∥∥
Lp(R×Ω×Ω′)

.

We also removed the integration over the probability space (Ω, dµ(y)), since there is no more
y-dependence inside the norm.

Now we are in a position to apply the other side of the decoupling estimate of Theorem 6.12:

βp

∥∥∥∑
k

εkdk

∥∥∥
Lp(R×Ω×Ω′)

≤ β2
p

∥∥∥∑
k

dK

∥∥∥
Lp(R)

= β2
p‖f‖Lp(R).

We have thus shown that:
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6.16. Theorem. Let S be a dyadic shift with scales separated. Then

‖Sf‖p ≤ β2
p‖f‖p, p ∈ (1,∞).

This bound is independent of the parameter N of the shift. If S is a general dyadic shift without
the separation of scales, we can use the splitting in Sec. 6.2 and the triangle inequality to deduce
that

‖Sf‖p ≤ Nβ2
p‖f‖p.

6.17. References. Dyadic shifts, in the generality considered here, were introduced by Lacey,
Petermichl and Reguera [8]. They played an important role in the resolution of the so-called
A2 conjecture [6] on weighted norm inequalities (see the corresponding course for more details).
The present martingale point-of-view to the dyadic shifts has not been presented before, although
parts of it can be implicitly seen in [7]. There are other approaches to this estimate for real-valued
functions that we have considered, but the present decoupling point-of-view is useful in view of
some vector-valued generalizations. The Decoupling Theorem 6.12 is essentially due to McConnell
[9] in a more abstract formulation; the more concrete version here is from [7]. The present proof,
where this estimate is derived directly from Burholder’s inequality, has not been presented before.

Appendix A. English–Finnish-vocabulary

adapted – mukautettu
conditional – ehdollinen
dilation – venytys
dyadic – dyadinen
expectation – odotusarvo
filtration – suodatus
independent – riippumaton
martingale – martingaali

maximal function – maksimaalifunktio
predictable – ennustettava
shift – siirto
stopping time – pysäytysaika
transform – muunnos
translation – siirto
truncated – katkaistu
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