
MARTINGALES AND HARMONIC ANALYSIS

Solutions to exercises

3. Martingale transforms and Burkholder’s inequality.
3.2 Let (Fk)k∈Z be a filtration and (fk) ⊆ Lp(F ) a sequence, and abbreviate Ekfk :=

E[fk|Fk]. Observe that the sequence (Ekfk) is a martingale. Also note that, by Jensen’s
inequality, (Ekfk)2 ≤ Ekf2

k .
Let p ≥ 2. By duality in Lp/2,

‖(Ekfk)k‖2Lp(`2) =

∫ (∑
k

(Ekfk)2
)p/2

dµ

2/p

= sup

{∫ ∑
k

(Ekfk)2 · φ dµ : ‖φ‖(p/2)′ ≤ 1

}
For any such φ,∫ ∑

k

(Ekfk)2 · φdµ ≤
∫ ∑

k

Ekf
2
k · |φ| dµ =

∫ ∑
k

f2
k · Ek|φ| dµ ≤

∫
Mφ

∑
k

f2
k dµ

≤ ‖Mφ‖L(p/2)′ · ‖(fk)‖2Lp(`2);

where M is the maximal function Mf := supk∈Z |Ekf | = ‖(Ekf)‖`∞ . By Doob’s inequal-
ity,

‖Mφ‖(p/2)′ ≤ p/2‖φ‖(p/2)′ ≤ p/2.
The claim for p ≥ 2 follows by taking supremum over all relevant φ.

Then suppose that 1 < p < 2. By duality in Lp(`2),

‖(Ekfk)k‖2Lp(`2) = sup

{∫ ∑
k

Ekfk · gk dµ : ‖(gk)‖Lp′ (`2) ≤ 1

}
.

For any such (gk),∫ ∑
k

Ekfk · gk dµ =
∫ ∑

k

fk · Ekgk =
∫ ∑

k

fk
‖(fj)‖Lp(`2)

Ek
(
‖(fj)‖Lp(`2) · gk

)
dµ

≤ ‖
(
Ek
(
‖(fj)‖Lp(`2) · gk

))
k
‖Lp′ (`2) = ‖(fj)‖Lp(`2) · ‖(Ekgk)k‖Lp′ (`2)

≤ cp‖(fj)‖Lp(`2)

where we used duality in Lp
′
(`2) and the first part of the proof with p′ > 2. The proof is

now completed by taking supremum over all relevant (gk).

3.3 Recall that fn =
∑n
k=0 dk and that {dk}nk=0 is an orthogonal set. Thus, by Pythagorean

Theorem,

‖fn‖22 =
n∑
k=0

‖dk‖22 =
∫ n∑

k=0

d2
kdµ = ‖Snf‖22 ⇒ ‖Snf‖2 = ‖fn‖2.

For the second claim, it is assumed that ‖Fn‖p ≤ cp‖SnF‖p is true for all martingales
F and for some 1 < p <∞. We follow the hint and write

f2
n =

(
n∑
k=0

dk

)2

=
n∑
k=0

d2
k + 2

n∑
k=0

(
k−1∑
`=0

d`

)
dk = (Snf)2 + 2

n∑
k=0

fk−1dk,
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so that

f2
n − (Snf)2 = 2

n∑
k=0

fk−1dk =: 2Fn.

It is easy to check that (fk−1dk)nk=0 is again a martingale difference sequence and thus,
Fn is a martingale. Then, by the assumption,

‖Fn‖p ≤ cp‖SnF‖p;

here

SnF =

(
n∑
k=0

f2
k−1d

2
k

)1/2

≤ max
0≤i≤n

|fi|

(
n∑
k=0

d2
k

)1/2

= max
0≤i≤n

|fi| · Snf.

By Doob’s inequality (for a finite martingale),∥∥∥ max
0≤i≤n

|fi|
∥∥∥
q
≤ q′ · max

0≤i≤n
‖fi‖q ≤ ‖fn‖q,

where the last estimate follows by the martingale property and Fact 1. Thus,

‖f2
n − (Snf)2‖p = 2‖Fn‖p ≤ cp

∥∥∥ max
0≤i≤n

|fi| · Snf
∥∥∥
p
≤ cp

∥∥∥ max
0≤i≤n

|fi|
∥∥∥

2p
· ‖Snf‖2p

≤ cp(2p)′‖fn‖2p · ‖Snf‖2p

where we used Cauchy-Schwarz. This gives us two estimates: (1)

‖Snf‖22p = ‖(Snf)2‖p = ‖f2
n + ((Snf)2 − f2

n)‖p ≤ ‖fn‖22p + cp‖fn‖2p‖Snf‖2p

and similarly, (2)

‖fn‖22p ≤ ‖Snf‖22p + cp‖fn‖2p‖Snf‖2p.

By dividing the first estimate by ‖fn‖2p and denoting X := ‖Snf‖2p/‖fn‖2p we get the
inequality X2 ≤ 1 + cpX which implies that

(X − cp/2)2 = X2 − cpX + (cp/2)2 ≤ 1 + c2p/4 ≤ (2 max{1, cp/2})2.

Thus,
X ≤ cp/2 + 2 max{1, cp/2} ≤ 3 max{1, cp}.

This gives us the second estimate in the assertion with a constant c2p ≤ 3 max{1, cp}. The
first estimate is obtained by similar considerations (i.e. dividing the second estimate by
‖Snf‖2p and denoting Y := ‖fn‖2p/‖fn‖2p).

3.4 Let’s denote by (1) ‖Snf‖p ≤ Cp‖fn‖p and by (2) 1
Cp
‖fn‖p ≤ ‖Snf‖p. By the previous

exercise we know both inequalities are fulfilled for p = 2k. First we use that p = 2k satifies
(2), then applying Marcinkiewicz interpolation, we obtain (2) for all p ∈ [2,∞). Duality
gives us (1) is satisfied for all p ∈ (1, 2]. Similarly, by previous exercise, (1) it’s true for
p = 2k, so by duality, (2) it’s satisfied for p = (2k)′. Applying Marcinkiewicz interpolation
we get that (2) it’s true for p ∈ (1, 2], therefore, (1) it’s satisfied, by duality, for p ∈ [2,∞).

3.5 Define gn = (v ∗ f)n =
∑n
j=0 vjdj . Sng =

(∑
j=0 d̃k

) 1
2
. By previous exercise, triangle

inequality for `2 norm and boundedness of vn

‖gn‖p ≤ C‖Sng‖p = C‖(
n∑
j=0

d̃2
k)

1
2 ‖p ≤ C‖(

n∑
j=0

d2
j )

1
2 ‖p = C‖Snf‖p ≤ C‖fn‖p
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4. Up-crossing and convergence of martingales.

4.1 Let
∞∑
k=1

xk be a series in Banach space. We want to show that if
∞∑
k=1

xk converges uncon-

ditionally, then
∞∑
k=1

δkxk covnerges for every choice of δk ∈ {0, 1}

Let’s reason by contradiction. Imagine there exists a family {δk} such that the series∑∞
k=1 δkxk is divergent, which means that fails the Cauchy criterion. We fix an ε > 0 so

that the Cauchy criterion fails with ε > 0, namely, there exists arbitrarily large m < n
such that ‖

∑n
k=m δkxk‖X ≥ ε. We then can find a sequence of numbers m1 < n1 < m2 <

n2 < ... such that ‖
∑nj

k=mj
δkxk‖X ≥ ε.

Define s1(j) = {k ∈ [mj , nj ] : δk = 1}, s0(j) = {k ∈ [mj , nj ] : δk = 0} and tj = #s1(j)
Define a permutation as follows

σ(k) =

 k if k < m1 or ∃j ∈ N s.t. nj−1 < k < mj

min{m ∈ s1(j) : σ(k − 1) < m} if k ∈ [mj ,mj + tj)
min{m ∈ s0(j) : σ(k − 1) < m} if k ∈ (mj + tj , nj ]

Clearly σ(k) is a permutation, and the series {xσ(k)} fails the Cauchy criterium since

‖
∑mj+tj
k=mj

xσ(k)‖x ≥ ε for j ∈ N which is a contradiction with the assumption that
∞∑
k=1

xk

converges unconditionally.

4.2 Let supn∈Z ‖fn‖22 = M ≤ ∞
n∑

k=m

‖dk‖22 = ‖
n∑

k=m

dk‖22 = ‖fn − fm‖22 ≤ 2M

That implies that
∑∞
k=−∞ ‖dk‖22 is a convergent series, so it satisfies the Cauchy cri-

terium, i.e ∀ε > 0 ∃Nε,Mε such that ∀m1, n1 > Nε and ∀m2, n2 < Mε

n1∑
k=m1

‖dk‖22 = ‖fn1 − fm1‖22 < ε

n2∑
k=m2

‖dk‖22 = ‖fn2 − fm2‖22 < ε

⇒ fn is a Cauchy sequence in L2 which is a complete space, and that gives us the
convergence in L2 and existence of the limit in L2 as n approaches +

−∞.


