MARTINGALES AND HARMONIC ANALYSIS

Solutions to exercises

3. Martingale transforms and Burkholder's inequality.

3.2 Let $\left(\mathscr{F}_{k}\right)_{k \in \mathbb{Z}}$ be a filtration and $\left(f_{k}\right) \subseteq L^{p}(\mathscr{F})$ a sequence, and abbreviate $E_{k} f_{k}:=$ $\mathbb{E}\left[f_{k} \mid \mathscr{F}_{k}\right]$. Observe that the sequence $\left(E_{k} f_{k}\right)$ is a martingale. Also note that, by Jensen's inequality, $\left(E_{k} f_{k}\right)^{2} \leq E_{k} f_{k}^{2}$.

Let $p \geq 2$. By duality in $L^{p / 2}$,

$$
\left\|\left(E_{k} f_{k}\right)_{k}\right\|_{L^{p}\left(\ell^{2}\right)}^{2}=\left(\int\left(\sum_{k}\left(E_{k} f_{k}\right)^{2}\right)^{p / 2} d \mu\right)^{2 / p}=\sup \left\{\int \sum_{k}\left(E_{k} f_{k}\right)^{2} \cdot \phi d \mu:\|\phi\|_{(p / 2)^{\prime}} \leq 1\right\}
$$

For any such ϕ,

$$
\begin{aligned}
\int \sum_{k}\left(E_{k} f_{k}\right)^{2} \cdot \phi d \mu & \leq \int \sum_{k} E_{k} f_{k}^{2} \cdot|\phi| d \mu=\int \sum_{k} f_{k}^{2} \cdot E_{k}|\phi| d \mu \leq \int M \phi \sum_{k} f_{k}^{2} d \mu \\
& \leq\|M \phi\|_{L^{(p / 2)^{\prime}}} \cdot\left\|\left(f_{k}\right)\right\|_{L^{p}\left(\ell^{2}\right)}^{2}
\end{aligned}
$$

where M is the maximal function $M f:=\sup _{k \in \mathbb{Z}}\left|E_{k} f\right|=\left\|\left(E_{k} f\right)\right\|_{\ell \infty}$. By Doob's inequality,

$$
\|M \phi\|_{(p / 2)^{\prime}} \leq p / 2\|\phi\|_{(p / 2)^{\prime}} \leq p / 2
$$

The claim for $p \geq 2$ follows by taking supremum over all relevant ϕ.
Then suppose that $1<p<2$. By duality in $L^{p}\left(\ell^{2}\right)$,

$$
\left\|\left(E_{k} f_{k}\right)_{k}\right\|_{L^{p}\left(\ell^{2}\right)}^{2}=\sup \left\{\int \sum_{k} E_{k} f_{k} \cdot g_{k} d \mu:\left\|\left(g_{k}\right)\right\|_{L^{p^{\prime}\left(\ell^{2}\right)}} \leq 1\right\}
$$

For any such $\left(g_{k}\right)$,

$$
\begin{aligned}
\int \sum_{k} E_{k} f_{k} \cdot g_{k} d \mu & =\int \sum_{k} f_{k} \cdot E_{k} g_{k}=\int \sum_{k} \frac{f_{k}}{\left\|\left(f_{j}\right)\right\|_{L^{p}\left(\ell^{2}\right)}} E_{k}\left(\left\|\left(f_{j}\right)\right\|_{L^{p}\left(\ell^{2}\right)} \cdot g_{k}\right) d \mu \\
& \leq\left\|\left(E_{k}\left(\left\|\left(f_{j}\right)\right\|_{L^{p}\left(\ell^{2}\right)} \cdot g_{k}\right)\right)_{k}\right\|_{L^{p^{\prime}\left(\ell^{2}\right)}}=\left\|\left(f_{j}\right)\right\|_{L^{p}\left(\ell^{2}\right)} \cdot\left\|\left(E_{k} g_{k}\right)\right\|_{L^{p^{\prime}}\left(\ell^{2}\right)} \\
& \leq c_{p}\left\|\left(f_{j}\right)\right\|_{L^{p}\left(\ell^{2}\right)}
\end{aligned}
$$

where we used duality in $L^{p^{\prime}}\left(\ell^{2}\right)$ and the first part of the proof with $p^{\prime}>2$. The proof is now completed by taking supremum over all relevant $\left(g_{k}\right)$.
3.3 Recall that $f_{n}=\sum_{k=0}^{n} d_{k}$ and that $\left\{d_{k}\right\}_{k=0}^{n}$ is an orthogonal set. Thus, by Pythagorean Theorem,

$$
\left\|f_{n}\right\|_{2}^{2}=\sum_{k=0}^{n}\left\|d_{k}\right\|_{2}^{2}=\int \sum_{k=0}^{n} d_{k}^{2} d \mu=\left\|S_{n} f\right\|_{2}^{2} \Rightarrow\left\|S_{n} f\right\|_{2}=\left\|f_{n}\right\|_{2}
$$

For the second claim, it is assumed that $\left\|F_{n}\right\|_{p} \leq c_{p}\left\|S_{n} F\right\|_{p}$ is true for all martingales F and for some $1<p<\infty$. We follow the hint and write

$$
f_{n}^{2}=\left(\sum_{k=0}^{n} d_{k}\right)^{2}=\sum_{k=0}^{n} d_{k}^{2}+2 \sum_{k=0}^{n}\left(\sum_{\ell=0}^{k-1} d_{\ell}\right) d_{k}=\left(S_{n} f\right)^{2}+2 \sum_{k=0}^{n} f_{k-1} d_{k}
$$

[^0]so that
$$
f_{n}^{2}-\left(S_{n} f\right)^{2}=2 \sum_{k=0}^{n} f_{k-1} d_{k}=: 2 F_{n}
$$

It is easy to check that $\left(f_{k-1} d_{k}\right)_{k=0}^{n}$ is again a martingale difference sequence and thus, F_{n} is a martingale. Then, by the assumption,

$$
\left\|F_{n}\right\|_{p} \leq c_{p}\left\|S_{n} F\right\|_{p}
$$

here

$$
S_{n} F=\left(\sum_{k=0}^{n} f_{k-1}^{2} d_{k}^{2}\right)^{1 / 2} \leq \max _{0 \leq i \leq n}\left|f_{i}\right|\left(\sum_{k=0}^{n} d_{k}^{2}\right)^{1 / 2}=\max _{0 \leq i \leq n}\left|f_{i}\right| \cdot S_{n} f
$$

By Doob's inequality (for a finite martingale),

$$
\left\|\max _{0 \leq i \leq n}\left|f_{i}\right|\right\|_{q} \leq q^{\prime} \cdot \max _{0 \leq i \leq n}\left\|f_{i}\right\|_{q} \leq\left\|f_{n}\right\|_{q},
$$

where the last estimate follows by the martingale property and Fact 1. Thus,

$$
\begin{aligned}
\left\|f_{n}^{2}-\left(S_{n} f\right)^{2}\right\|_{p} & =2\left\|F_{n}\right\|_{p} \leq c_{p}\left\|_{0 \leq i \leq n}\left|f_{i}\right| \cdot S_{n} f\right\|_{p} \leq c_{p}\left\|\max _{0 \leq i \leq n}\left|f_{i}\right|\right\|_{2 p} \cdot\left\|S_{n} f\right\|_{2 p} \\
& \leq c_{p}(2 p)^{\prime}\left\|f_{n}\right\|_{2 p} \cdot\left\|S_{n} f\right\|_{2 p}
\end{aligned}
$$

where we used Cauchy-Schwarz. This gives us two estimates: (1)

$$
\left\|S_{n} f\right\|_{2 p}^{2}=\left\|\left(S_{n} f\right)^{2}\right\|_{p}=\left\|f_{n}^{2}+\left(\left(S_{n} f\right)^{2}-f_{n}^{2}\right)\right\|_{p} \leq\left\|f_{n}\right\|_{2 p}^{2}+c_{p}\left\|f_{n}\right\|_{2 p}\left\|S_{n} f\right\|_{2 p}
$$

and similarly, (2)

$$
\left\|f_{n}\right\|_{2 p}^{2} \leq\left\|S_{n} f\right\|_{2 p}^{2}+c_{p}\left\|f_{n}\right\|_{2 p}\left\|S_{n} f\right\|_{2 p}
$$

By dividing the first estimate by $\left\|f_{n}\right\|_{2 p}$ and denoting $X:=\left\|S_{n} f\right\|_{2 p} /\left\|f_{n}\right\|_{2 p}$ we get the inequality $X^{2} \leq 1+c_{p} X$ which implies that

$$
\left(X-c_{p} / 2\right)^{2}=X^{2}-c_{p} X+\left(c_{p} / 2\right)^{2} \leq 1+c_{p}^{2} / 4 \leq\left(2 \max \left\{1, c_{p} / 2\right\}\right)^{2}
$$

Thus,

$$
X \leq c_{p} / 2+2 \max \left\{1, c_{p} / 2\right\} \leq 3 \max \left\{1, c_{p}\right\} .
$$

This gives us the second estimate in the assertion with a constant $c_{2 p} \leq 3 \max \left\{1, c_{p}\right\}$. The first estimate is obtained by similar considerations (i.e. dividing the second estimate by $\left\|S_{n} f\right\|_{2 p}$ and denoting $\left.Y:=\left\|f_{n}\right\|_{2 p} /\left\|f_{n}\right\|_{2 p}\right)$.
3.4 Let's denote by (1) $\left\|S_{n} f\right\|_{p} \leq C_{p}\left\|f_{n}\right\|_{p}$ and by (2) $\frac{1}{C_{p}}\left\|f_{n}\right\|_{p} \leq\left\|S_{n} f\right\|_{p}$. By the previous exercise we know both inequalities are fulfilled for $p=2^{k}$. First we use that $p=2^{k}$ satifies (2), then applying Marcinkiewicz interpolation, we obtain (2) for all $p \in[2, \infty)$. Duality gives us (1) is satisfied for all $p \in(1,2]$. Similarly, by previous exercise, (1) it's true for $p=2^{k}$, so by duality, (2) it's satisfied for $p=\left(2^{k}\right)^{\prime}$. Applying Marcinkiewicz interpolation we get that (2) it's true for $p \in(1,2]$, therefore, (1) it's satisfied, by duality, for $p \in[2, \infty)$.
3.5 Define $g_{n}=(v * f)_{n}=\sum_{j=0}^{n} v_{j} d_{j} . \quad S_{n} g=\left(\sum_{j=0} \tilde{d}_{k}\right)^{\frac{1}{2}}$. By previous exercise, triangle inequality for ℓ^{2} norm and boundedness of v_{n}

$$
\left\|g_{n}\right\|_{p} \leq C\left\|S_{n} g\right\|_{p}=C\left\|\left(\sum_{j=0}^{n} \tilde{d}_{k}^{2}\right)^{\frac{1}{2}}\right\|_{p} \leq C\left\|\left(\sum_{j=0}^{n} d_{j}^{2}\right)^{\frac{1}{2}}\right\|_{p}=C\left\|S_{n} f\right\|_{p} \leq C\left\|f_{n}\right\|_{p}
$$

4. Up-crossing and convergence of martingales.
4.1 Let $\sum_{k=1}^{\infty} x_{k}$ be a series in Banach space. We want to show that if $\sum_{k=1}^{\infty} x_{k}$ converges unconditionally, then $\sum_{k=1}^{\infty} \delta_{k} x_{k}$ covnerges for every choice of $\delta_{k} \in\{0,1\}$

Let's reason by contradiction. Imagine there exists a family $\left\{\delta_{k}\right\}$ such that the series $\sum_{k=1}^{\infty} \delta_{k} x_{k}$ is divergent, which means that fails the Cauchy criterion. We fix an $\epsilon>0$ so that the Cauchy criterion fails with $\epsilon>0$, namely, there exists arbitrarily large $m<n$ such that $\left\|\sum_{k=m}^{n} \delta_{k} x_{k}\right\|_{X} \geq \epsilon$. We then can find a sequence of numbers $m_{1}<n_{1}<m_{2}<$ $n_{2}<\ldots$ such that $\left\|\sum_{k=m_{j}}^{n_{j}} \delta_{k} x_{k}\right\|_{X} \geq \epsilon$.

Define $s_{1}(j)=\left\{k \in\left[m_{j}, n_{j}\right]: \delta_{k}=1\right\}, s_{0}(j)=\left\{k \in\left[m_{j}, n_{j}\right]: \delta_{k}=0\right\}$ and $t_{j}=\# s_{1}(j)$
Define a permutation as follows
$\sigma(k)= \begin{cases}k & \text { if } k<m_{1} \text { or } \exists j \in \mathbb{N} \text { s.t. } n_{j-1}<k<m_{j} \\ \min \left\{m \in s_{1}(j): \sigma(k-1)<m\right\} & \text { if } k \in\left[m_{j}, m_{j}+t_{j}\right) \\ \min \left\{m \in s_{0}(j): \sigma(k-1)<m\right\} & \text { if } k \in\left(m_{j}+t_{j}, n_{j}\right]\end{cases}$
Clearly $\sigma(k)$ is a permutation, and the series $\left\{x_{\sigma(k)}\right\}$ fails the Cauchy criterium since $\left\|\sum_{k=m_{j}}^{m_{j}+t_{j}} x_{\sigma(k)}\right\|_{x} \geq \epsilon$ for $j \in \mathbb{N}$ which is a contradiction with the assumption that $\sum_{k=1}^{\infty} x_{k}$ converges unconditionally.
4.2 Let $\sup _{n \in \mathbb{Z}}\left\|f_{n}\right\|_{2}^{2}=M \leq \infty$

$$
\sum_{k=m}^{n}\left\|d_{k}\right\|_{2}^{2}=\left\|\sum_{k=m}^{n} d_{k}\right\|_{2}^{2}=\left\|f_{n}-f_{m}\right\|_{2}^{2} \leq 2 M
$$

That implies that $\sum_{k=-\infty}^{\infty}\left\|d_{k}\right\|_{2}^{2}$ is a convergent series, so it satisfies the Cauchy criterium, i.e $\forall \epsilon>0 \exists N_{\epsilon}, M_{\epsilon}$ such that $\forall m_{1}, n_{1}>N_{\epsilon}$ and $\forall m_{2}, n_{2}<M_{\epsilon}$

$$
\begin{aligned}
& \sum_{k=m_{1}}^{n_{1}}\left\|d_{k}\right\|_{2}^{2}=\left\|f_{n_{1}}-f_{m_{1}}\right\|_{2}^{2}<\epsilon \\
& \sum_{k=m_{2}}^{n_{2}}\left\|d_{k}\right\|_{2}^{2}=\left\|f_{n_{2}}-f_{m_{2}}\right\|_{2}^{2}<\epsilon
\end{aligned}
$$

$\Rightarrow f_{n}$ is a Cauchy sequence in L^{2} which is a complete space, and that gives us the convergence in L^{2} and existence of the limit in L^{2} as n approaches ${ }_{-}^{+}$.

[^0]: Version: December 7, 2012.

