
MARTINGALES AND HARMONIC ANALYSIS

Solutions to exercises

2. Discrete-time martingales and Doob’s inequality.
2.7 Real valued case: For all p ∈ [1,∞],

(1) ‖f‖p = sup

{∫
fg dµ : ‖g‖p′ ≤ 1

}
.

Proof. First step is to show that if f ∈ Lp, then (1) holds. We use Hölder’s inequality to
see that for all g ∈ Lp′

,∫
fg dµ ≤

∫
|f ||g| dµ ≤ ‖f‖p ‖g‖p′ ,

and thus,

sup

{∫
fg dµ : ‖g‖p′ ≤ 1

}
≤ ‖f‖p.

Note that this, in particular, shows that if f ∈ Lp then the right hand side of (1) is finite
and consequently, if the right hand side of (1) is infinite, then f /∈ Lp.

For the reverse inequality, consider the three cases:
• Suppose 1 < p <∞. We may assume that ‖f‖p > 0 (since otherwise f = 0 a.e. and

the claimed equality holds in the form 0 = 0). Let g0 := sgn(f)|f |p−1/‖f‖p−1
p where

sgn(f)(x) := 1 if f(x) ≥ 0 and sgn(f) := −1 if f(x) < 0, is the sign of f(x). Then
‖g0‖p′ = 1 , and we get

sup

{∫
fg dµ : ‖g‖p′ ≤ 1

}
≥
∫
fg0 dµ = ‖f‖p,

since f · sgn(f) = |f |.
• Then consider p = 1 and p′ =∞. Let g0 := sgn(f). Then ‖g‖∞ = 1 and

sup

{∫
fg dµ : ‖g‖∞ ≤ 1

}
≥
∫
fg dµ =

∫
|f | dµ = ‖f‖1.

• Finally, consider p = ∞ and p′ = 1. For every ε > 0 there exists a set E ⊂ Ω with
µ(E) > 0 and |f | > ‖f‖∞ − ε on E. Note that we might have µ(E) =∞. However,
by σ-finiteness, E = ∪∞i=0(E ∩ Ei) where µ(Ei) < ∞ for all i and the sets Ei are
disjoint. Thus, 0 < µ(E) =

∑∞
i=0 µ(E ∩ Ei), and it follows that 0 < µ(E ∩ Ek) <∞

for some k. Denote E ∩Ek =: Eε and let gε := sgn(f)1Eε/µ(Eε). Then ‖gε‖ = 1 and

sup

{∫
fg dµ : ‖g‖1 ≤ 1

}
≥
∫
fgε dµ =

1

µ(Eε)

∫
Eε

|f | dµ > ‖f‖∞ − ε for all ε > 0,

so that

sup

{∫
fg dµ : ‖g‖1 ≤ 1

}
≥ ‖f‖∞.

We have shown that (1) is true for every 1 ≤ p ≤ ∞ and f ∈ Lp.
The second and final step is to show that if the right hand side of (1) is finite, then

f ∈ Lp (in which case the two quantities are equal). To this end, suppose that f is
any measurable function. For each n ∈ N, by σ-finiteness, we may pick measurable sets
E1 ⊂ E2 ⊂ . . . ⊂ En → Ω with µ(En) < ∞. Define Fn := En ∩ {|f | ≤ n} → Ω and
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fn := 1Fnf . Then fn ∈ Lp for each n (and all 1 ≤ p ≤ ∞), and thus, for each fn, there
exists gn such that

‖fn‖p =

∫
fngn dµ and ‖gn‖p′ = 1.

This implies that

‖f‖p = sup
n
‖fn‖p = sup

{∫
f(1Fngn) dµ : n ∈ N

}
≤ sup

{∫
fg dµ : ‖g‖p′ ≤ 1

}
.

Vector valued case: Use same ideas; for example, to show the estimate ≥, use Hölder’s
inequality, first with respect to sequences, then with respect to integrals to see that∫ ∑
k

fk(ω)gk(ω) dµ(ω) ≤
∫
‖(fk(ω))k‖`p‖(gk(ω))k‖`q′ dµ ≤ ‖(fk)‖Lp(`q)‖(gk)‖Lp′ (`q′ ).

For example, the vectors (gk) that give us the equality

‖(fk)‖Lp(`q) =

∫ ∑
k

fkgk dµ

are
gk(ω) := sgn(fk(ω)) · |fk(ω)|q−1 · ‖(fk(ω))‖p−q`q · ‖(fk)‖1−pLp(`q)

in the case 1 < p, g <∞ and

gk(ω) = sgn(fk(ω)) · ‖(fk(ω))‖p−1
`∞ · ‖(fk)‖1−pLp(`∞)

for k = k0 with |fk0(ω)| > (1 − ε)‖(fk(ω))‖`∞ and gk(ω) = 0 for other k in the case
1 < p <∞, q =∞.

�

Facts: In the solutions, we will repeatedly use the duality provided by Exercise 1
together with the following facts about the conditional expectation:

Fact 1: The operator f 7→ E[f |G ] is a contraction: ‖E[f |G ]‖p ≤ ‖f‖p for all 1 ≤ p ≤ ∞.
Proof: Corollary 1.16

Fact 2: E[g · f |G ] = g · E[f |G ] for g ∈ L0(G ). Proof: Theorem 1.20

Fact 3: The operator f 7→ E[f |G ] is self-adjoint:∫
Ω

E[f |G ] · g dµ =

∫
Ω

f · E[g|G ] dµ.

Proof: Use the definition of conditional expectation and Fact 2.

2.8 Let (Fk)k∈Z be a filtration and f ∈ Lp(F ), and abbreviate Ekf := E[f |Fk].

(∗) ⇒ Doob: Let f = (fi)i∈Z be a nonnegative submartigale with supi∈Z ‖fi‖p < ∞.
We wish to bound the quantity

‖f∗‖p =
∥∥∥ sup

i
|fi|
∥∥∥
p

= ‖(fi)‖Lp(`∞) = sup

{∫ ∑
i

figi dµ : ‖(gi)‖Lp′ (`1) ≤ 1

}
.

For any such (gi), we have that∫ ∑
i

figi dµ = lim
n→∞

∫ ∑
i≤n

fi|gi| dµ
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Here, for every n, since (fi) is a submartingale and by Fact 3 and Hölder’s inequality,∫ ∑
i≤n

fi|gi| dµ ≤
∫ ∑

i≤n

Eifn|gi| dµ =

∫
fn
∑
i≤n

Ei|gi| dµ

≤ ‖fn‖p ·
∥∥∥∑

i

Ei|gi|
∥∥∥
p′
≤ p′ · sup

k
‖fk‖p ·

∥∥∥∑
i

|gi|
∥∥∥
p′

= p′ · sup
k
‖fk‖p · ‖(gi)‖Lp′ (`1) = p′ · sup

k
‖fk‖p

where we used (∗) (in Lp′
) in the last estimate, and the upper bound does not depend on

n. Doob’s Inequality follows by taking supremum over all relevant (gi).

To prove Doob ⇒ (∗), we consider the following version of the Doob’s Inequality, which
is a version of the slightly more general case, Theorem 2.10 in the lecture notes:

Let f ∈ Lp (so, f is a function, not a sequence or a martingale). Let (Fk)k be a
filtration, and denote Ekf := E[f |Fk]. Set

(M) Mf := sup
k∈Z
|Ekf | = ‖(Ekf)‖`∞ .

Then
‖Mf‖p ≤ p′ · ‖f‖p for all 1 < p ≤ ∞.

To convince oneself that this is in the regime of Theorem 2.10, note that (Ekf) is a
martingale for f ∈ Lp, and thus, (Ek|f |) is a nonnegative submartingale, and make use of
Fact 1.

Doob ⇒ (∗): By duality in Lp,∥∥∥∑
k

Ekfk

∥∥∥
p

= sup

{∫ (∑
k

Ekfk

)
g dµ : ‖g‖p′ ≤ 1

}
.

For any such g, we have that∫ ∑
k

Ekfkg dµ =

∫ ∑
k

fkEkg dµ ≤
∫
Mg

∑
k

fk dµ ≤
∥∥∥∑

k

fk

∥∥∥
p
‖Mg‖p′ ≤ p ·

∥∥∥∑
k

fk

∥∥∥
p

where we used Fact 3, Hölder’s inequality and the version of Doob’s inequality. Taking
supremum over all relevant g, (∗) follows.

2.9 We wish to bound the quantity∥∥∥∑
k

Ekfk

∥∥∥2

2
=

∫ (∑
k

Ekfk

)2

dµ.

We estimate∫ (∑
k

Ekfk

)2

dµ =

∫ (∑
k

(Ekfk)2 + 2
∑
`

∑
k<`

Ekfk · E`f`

)
dµ ≤ 2

∫ ∑
`

∑
k≤`

Ekfk · E`f` dµ

=2
∑
`

∑
k≤`

∫
E`(Ekfk · f`) dµ=2

∑
`

∑
k≤`

∫
Ekfk · f` dµ

≤ 2

∫ ∑
k

Ekfk ·
∑
`

f` dµ
3.
≤ 2
∥∥∥∑

k

Ekfk

∥∥∥
2
·
∥∥∥∑

`

f`

∥∥∥
2
;

where we used Fact 2 together with the summation condition k ≤ `, the definition of
conditional expectation and Cauchy-Schwarz. We obtained∥∥∥∑

k

Ekfk

∥∥∥2

2
≤ 2
∥∥∥∑

k

Ekfk

∥∥∥
2
·
∥∥∥∑

k

fk

∥∥∥
2
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To complete the proof, we wish to divide by
∥∥∥∑k Ekfk

∥∥∥
2
and to do this, we must have a

finite quantity. Note that for a truncated summation we have, by Minkowski’s inequality
and fact 1, that∥∥∥ ∑

|k|≤N

Ekfk

∥∥∥
2
≤
∑
|k|≤N

∥∥∥Ekfk

∥∥∥
2
≤
∑
|k|≤N

‖fk‖2 <∞.

Thus, (∗) is true for any truncated sum with an upper bound does not depend on N , the
length of the summation. The monotone convergence theorem then completes the proof.

3. Martingale transforms and Burkholder’s inequality.
3.1 Recall from Section 1.9 in the lecture notes that for f ∈ L2(F , µ), E[f |Fk] ∈ L2(Fk, µ) is

the orthogonal projection of f onto the closed subspace L2(Fk, µ) ⊆ L2(F , µ), and hence,

(f − E[f |Fk]) ⊥ L2(Fk, µ).

Let (fk)nk=0 be an L2- martingale adapted to a filtration (Fk)nk=0 and let (vk)nk=0 be a
bounded predictable sequence with ‖vk‖∞ ≤ 1. By martingale property,

dk = (fk − fk−1) = (fk − E[fk|Fk−1]) ⊥ L2(Fk−1, µ) ⊇ {d0, d1, . . . , dk−1} ∀ 1 ≤ k ≤ n.
Consequently, {dk}nk=0 ⊆ L2(F , µ) is an orthogonal set (i.e.

∫
di · dj dµ = 0 for all i 6= j).

It is easy to check that also {vkdk}nk=0 is an orthogonal set. By applying Pythagorean
Theorem twice (or Minkowski’s inequality and Pythagorean Theorem), and by the facts
that ‖vk‖∞ ≤ 1 and fn =

∑n
k=0 dk, we obtain

‖(v ∗ f)n‖22 =
∥∥∥ n∑

k=0

vkdk

∥∥∥2

2
=

n∑
k=0

‖vkdk‖22 ≤
n∑

k=0

‖dk‖22 =
∥∥∥ n∑

k=0

dk

∥∥∥2

2
= ‖fn‖22

and hence ‖(v ∗ f)n‖2 ≤ ‖fn‖2.


