MARTINGALES AND HARMONIC ANALYSIS

2. Solutions to exercises

2.1. Discrete-time martingales and Doob's inequality.

1. We may assume that $I \neq \varnothing$. For all $j \in \mathbb{Z}$, let $N(j):=\{i \in I: i \geq j\}$. This is empty for some j if and only if I is bounded from above, i.e., there exists max I. Set $n(j):=\min N(j)$ if $N(j) \neq \varnothing$, and $n(j):=\max I$ otherwise. With the help of the tower rule one easily checks that $\mathscr{F}_{j}:=\mathscr{F}_{n(j)}$ is a filtration and $f_{j}:=f_{n(j)}$ a martingale adapted to it. Clearly $n(i)=i$ if $i \in I$, so this is an extension of the original one.
2. For the filtration of the hint, there holds

$$
f_{-n}(x):=\mathbb{E}\left[f \mid \mathscr{F}_{-n}\right](x)=\frac{1}{n \delta} \int_{0}^{n \delta} f(y) \mathrm{d} y, \quad x \in(0, n \delta],
$$

so the corresponding Doob's maximal function satisfies, for $x \in((n-1) \delta, n \delta]$,

$$
M f(x) \geq \frac{1}{n \delta} \int_{0}^{n \delta} f(y) \mathrm{d} y \geq \frac{1}{x+\delta} \int_{0}^{x} f(y) \mathrm{d} y=: F_{\delta}(x)
$$

One can easilly check that $\left\|f_{i}\right\|_{p} \leq\|f\|_{p}$ for all $i \in \mathbb{Z}_{-}$, then by Doob's inequality $\left\|F_{\delta}\right\|_{p} \leq$ $p^{\prime}\|f\|_{p}$, and the claim follows from monotone convergence as $\delta \searrow 0$.
3. Let $f(x):=1_{(0,1]}(x) \cdot x^{\alpha}$. This is in $L^{p}\left(\mathbb{R}_{+}\right)$if and only if $\alpha>-1 / p$. Now

$$
F(x):=\frac{1}{x} \int_{0}^{x} f(y) \mathrm{d} y=\frac{x^{\alpha}}{1+\alpha}=(1+\alpha)^{-1} f(x), \quad x \in(0,1] .
$$

where $1+\alpha>1 / p^{\prime}>0$. Hence, if Hardy's inequality holds with some constant C, then $C \geq\|F\|_{p} /\|f\|_{p} \geq(1+\alpha)^{-1} \forall \alpha>-1 / p$. In the limit $\alpha \searrow-1 / p$, there follows that $C \geq(1-1 / p)^{-1}=p^{\prime}$.
4. We define $\mathscr{F}_{k}:=\sigma\left(\mathscr{D}_{k}^{\beta}\right)$. One has to show that $\mathscr{F}_{k} \subseteq \mathscr{F}_{k+1}$. It suffices to prove that every $J \in \mathscr{D}_{k}^{\beta}$ is a (necessarily countable) union of some sets in $\mathscr{D}_{k+1}^{\beta}$. By definition, $J=I+\sum_{j>k} 2^{-j} \beta_{j}$ for some $I=2^{-k}[\ell, \ell+1) \in \mathscr{D}_{k}$. Clearly $I=I_{0} \cup I_{1}$, where

$$
I_{i}:=2^{-k}[\ell+i / 2, \ell+(i+1) / 2)=2^{-(k+1)}[2 \ell+i, 2 \ell+i+1) \in \mathscr{D}_{k+1} .
$$

Now $J=J_{0} \cup J_{1}$, if we set

$$
\begin{aligned}
J_{i}:=I_{i}+\sum_{j>k} 2^{-j} \beta_{j} & =\left(I_{i}+2^{-(k+1)} \beta_{k+1}\right)+\sum_{j>k+1} 2^{-j} \beta_{j} \\
& \in \mathscr{D}_{k+1}+\sum_{j>k+1} 2^{-j} \beta_{j}=\mathscr{D}_{k+1}^{\beta} .
\end{aligned}
$$

5. Consider the endpoints of the intervals $I \in \mathscr{D}_{k}^{0} \cup \mathscr{D}_{k}^{\beta}$. They have the form $2^{-k} \ell$ or $2^{-k} \ell+$ $\sum_{j>k} 2^{-j} \beta_{j}=2^{-k}\left(\ell+\sum_{j>k} 2^{k-j} \beta_{j}\right)$, where $\ell \in \mathbb{Z}$. Depending on the parity of k, there holds one of

$$
\sum_{j>k} 2^{k-j} \beta_{j}=\left\{\begin{array}{l}
\sum_{j=1,3,5, \ldots} 2^{-j}=2^{-1} \sum_{j=0}^{\infty} 4^{-j}=2 / 3 \\
\sum_{j=2,4,5, \ldots} 2^{-j}=4^{-1} \sum_{j=0}^{\infty} 4^{-j}=1 / 3
\end{array}\right.
$$

Thus the endpoints have the form $2^{-k} \ell$ and either $2^{-k}(\ell+1 / 3)$ or $2^{-k}(\ell+2 / 3)$; in either case, the minimal distance of two endpoints is $2^{-k} / 3$.

Let then J be some finite subinterval of \mathbb{R}. Choose the unique $k \in \mathbb{Z}$ with $3|J|<2^{-k} \leq$ $6|J|$. Since $|J|<2^{-k} / 3$, the interval J can contain at most one endpoint of one interval

[^0]$I^{\prime} \in \mathscr{D}_{k}^{0} \cup \mathscr{D}_{k}^{\beta}$. If $I^{\prime} \in \mathscr{D}_{k}^{0}$, then J does not contain any endpoints of intervals in \mathscr{D}_{k}^{β}. On the other hand, \mathscr{D}_{k}^{β} covers all of \mathbb{R}, so in particular all of J. Since J is a connected interval and does not contain endpoints of \mathscr{D}_{k}^{β}, it must be completely contained in a single interval $I \in \mathscr{D}_{k}^{\beta}$. Symmetrically, if $I^{\prime} \in \mathscr{D}_{k}^{\beta}$, then there exists $I \in \mathscr{D}_{k}^{0}$, which contains J.

In any case $J \subset I \in \mathscr{D}_{k}^{0} \cup \mathscr{D}_{k}^{\beta}$ and $|I|=2^{-k} \leq 6|J|$.
6. Let M^{0} and M^{β} be Doob's maximal operators related to the filtrations $\left(\mathscr{F}_{k}^{0}\right)_{k \in \mathbb{Z}}:=$ $\left(\sigma\left(\mathscr{D}_{k}^{0}\right)\right)_{k \in \mathbb{Z}}$ and $\left(\mathscr{F}_{k}^{\beta}\right)_{k \in \mathbb{Z}}:=\left(\sigma\left(\mathscr{D}_{k}^{\beta}\right)\right)_{k \in \mathbb{Z}}\left(\right.$ i.e. $\left(f_{k}^{0}\right)_{k \in \mathbb{Z}}:=\left(\mathbb{E}\left[|f| \mid \mathscr{F}_{k}^{0}\right]\right)_{k \in \mathbb{Z}}$ and $\left(f_{k}^{\beta}\right)_{k \in \mathbb{Z}}:=$ $\left.\left(\mathbb{E}\left[\mid f \| \mathscr{F}_{k}^{\beta}\right]\right)_{k \in \mathbb{Z}}\right)$. Let $x \in \mathbb{R}$ and $J \ni x$ be a finite subinterval of \mathbb{R}. By the previous exercise, there exists $I \in \mathscr{D}^{0} \cup \mathscr{D}^{\beta}$, such that $I \supset J$ and $|I| \leq 6|J|$. Hence

$$
\frac{1}{|J|} \int_{J}|f(y)| \mathrm{d} y \leq \frac{6}{|I|} \int_{I}|f(y)| \mathrm{d} y \leq \begin{cases}6 M^{0}|f|(x), & I \in \mathscr{D}^{0} \\ 6 M^{\beta}|f|(x), & I \in \mathscr{D}^{\beta}\end{cases}
$$

Taking the supremum over all $J \ni x$ on the left, we obtain

$$
M_{H L} f(x) \leq 6 M^{0}|f|(x)+6 M^{\beta}|f|(x)
$$

and then by Doob's inequality

$$
\left\|M_{H L} f\right\|_{p} \leq 6\left\|M^{0}|f|\right\|_{p}+6\left\|M^{\beta}|f|\right\|_{p} \leq 12 p^{\prime}\|f\|_{p}
$$

[^0]: Version: November 20, 2012.

