MARTINGALES AND HARMONIC ANALYSIS

2. Solutions to exercises

2.1. Discrete-time martingales and Doob's inequality.

- 1. We may assume that $I \neq \emptyset$. For all $j \in \mathbb{Z}$, let $N(j) := \{i \in I : i \geq j\}$. This is empty for some j if and only if I is bounded from above, i.e., there exists max I. Set $n(j) := \min N(j)$ if $N(j) \neq \emptyset$, and $n(j) := \max I$ otherwise. With the help of the tower rule one easily checks that $\mathscr{F}_j := \mathscr{F}_{n(j)}$ is a filtration and $f_j := f_{n(j)}$ a martingale adapted to it. Clearly n(i) = i if $i \in I$, so this is an extension of the original one.
- 2. For the filtration of the hint, there holds

$$f_{-n}(x) := \mathbb{E}[f|\mathscr{F}_{-n}](x) = \frac{1}{n\delta} \int_0^{n\delta} f(y) \,\mathrm{d}y, \qquad x \in (0, n\delta],$$

so the corresponding Doob's maximal function satisfies, for $x \in ((n-1)\delta, n\delta]$,

$$Mf(x) \ge \frac{1}{n\delta} \int_0^{n\delta} f(y) \, \mathrm{d}y \ge \frac{1}{x+\delta} \int_0^x f(y) \, \mathrm{d}y =: F_\delta(x).$$

One can easily check that $||f_i||_p \leq ||f||_p$ for all $i \in \mathbb{Z}_-$, then by Doob's inequality $||F_{\delta}||_p \leq p'||f||_p$, and the claim follows from monotone convergence as $\delta \searrow 0$.

3. Let $f(x) := 1_{(0,1]}(x) \cdot x^{\alpha}$. This is in $L^p(\mathbb{R}_+)$ if and only if $\alpha > -1/p$. Now

$$F(x) := \frac{1}{x} \int_0^x f(y) \, \mathrm{d}y = \frac{x^\alpha}{1+\alpha} = (1+\alpha)^{-1} f(x), \qquad x \in (0,1].$$

where $1 + \alpha > 1/p' > 0$. Hence, if Hardy's inequality holds with some constant C, then $C \ge ||F||_p/||f||_p \ge (1 + \alpha)^{-1} \ \forall \alpha > -1/p$. In the limit $\alpha \searrow -1/p$, there follows that $C \ge (1 - 1/p)^{-1} = p'$.

4. We define $\mathscr{F}_k := \sigma(\mathscr{D}_k^\beta)$. One has to show that $\mathscr{F}_k \subseteq \mathscr{F}_{k+1}$. It suffices to prove that every $J \in \mathscr{D}_k^\beta$ is a (necessarily countable) union of some sets in \mathscr{D}_{k+1}^β . By definition, $J = I + \sum_{j>k} 2^{-j} \beta_j$ for some $I = 2^{-k} [\ell, \ell+1) \in \mathscr{D}_k$. Clearly $I = I_0 \cup I_1$, where

$$I_i := 2^{-k} [\ell + i/2, \ell + (i+1)/2) = 2^{-(k+1)} [2\ell + i, 2\ell + i + 1) \in \mathcal{D}_{k+1}.$$

Now $J = J_0 \cup J_1$, if we set

$$J_i := I_i + \sum_{j>k} 2^{-j} \beta_j = (I_i + 2^{-(k+1)} \beta_{k+1}) + \sum_{j>k+1} 2^{-j} \beta_j$$

$$\in \mathscr{D}_{k+1} + \sum_{j>k+1} 2^{-j} \beta_j = \mathscr{D}_{k+1}^{\beta}.$$

5. Consider the endpoints of the intervals $I \in \mathscr{D}_k^0 \cup \mathscr{D}_k^\beta$. They have the form $2^{-k}\ell$ or $2^{-k}\ell + \sum_{j>k} 2^{-j}\beta_j = 2^{-k} (\ell + \sum_{j>k} 2^{k-j}\beta_j)$, where $\ell \in \mathbb{Z}$. Depending on the parity of k, there holds one of

$$\sum_{j>k} 2^{k-j} \beta_j = \begin{cases} \sum_{j=1,3,5,\dots} 2^{-j} = 2^{-1} \sum_{j=0}^{\infty} 4^{-j} = 2/3, \\ \sum_{j=2,4,5,\dots} 2^{-j} = 4^{-1} \sum_{j=0}^{\infty} 4^{-j} = 1/3. \end{cases}$$

Thus the endpoints have the form $2^{-k}\ell$ and either $2^{-k}(\ell + 1/3)$ or $2^{-k}(\ell + 2/3)$; in either case, the minimal distance of two endpoints is $2^{-k}/3$.

Let then J be some finite subinterval of \mathbb{R} . Choose the unique $k \in \mathbb{Z}$ with $3|J| < 2^{-k} \le 6|J|$. Since $|J| < 2^{-k}/3$, the interval J can contain at most one endpoint of one interval

Version: November 20, 2012.

 $I' \in \mathscr{D}_k^0 \cup \mathscr{D}_k^\beta$. If $I' \in \mathscr{D}_k^0$, then J does not contain any endpoints of intervals in \mathscr{D}_k^β . On the other hand, \mathscr{D}_k^β covers all of \mathbb{R} , so in particular all of J. Since J is a connected interval and does not contain endpoints of D^β_k, it must be completely contained in a single interval I ∈ D^β_k. Symmetrically, if I' ∈ D^β_k, then there exists I ∈ D⁰_k, which contains J. In any case J ⊂ I ∈ D⁰_k ∪ D^β_k and |I| = 2^{-k} ≤ 6|J|.
6. Let M⁰ and M^β be Doob's maximal operators related to the filtrations (F⁰_k)_{k∈Z} := (C⁰_k) ∈ D^β_k.

 $(\sigma(\mathscr{D}_k^0))_{k\in\mathbb{Z}}$ and $(\mathscr{F}_k^\beta)_{k\in\mathbb{Z}} := (\sigma(\mathscr{D}_k^\beta))_{k\in\mathbb{Z}}$ (i.e. $(f_k^0)_{k\in\mathbb{Z}} := (\mathbb{E}[|f||\mathscr{F}_k^0])_{k\in\mathbb{Z}}$ and $(f_k^\beta)_{k\in\mathbb{Z}} := (\mathbb{E}[|f||\mathscr{F}_k^\beta])_{k\in\mathbb{Z}}$). Let $x \in \mathbb{R}$ and $J \ni x$ be a finite subinterval of \mathbb{R} . By the previous exercise, there exists $I \in \mathscr{D}^0 \cup \mathscr{D}^\beta$, such that $I \supset J$ and $|I| \le 6|J|$. Hence

$$\frac{1}{|J|} \int_J |f(y)| \,\mathrm{d} y \leq \frac{6}{|I|} \int_I |f(y)| \,\mathrm{d} y \leq \begin{cases} 6M^0 |f|(x), & I \in \mathscr{D}^0, \\ 6M^\beta |f|(x), & I \in \mathscr{D}^\beta. \end{cases}$$

Taking the supremum over all $J \ni x$ on the left, we obtain

$$M_{HL}f(x) \le 6M^0 |f|(x) + 6M^\beta |f|(x)$$

and then by Doob's inequality

$$||M_{HL}f||_p \le 6||M^0|f|||_p + 6||M^\beta|f|||_p \le 12p'||f||_p.$$