
Lecture 11: periodic orbits as limit sets

Introduction and notation

The expounded material can be found in

• Chapter 2 of [1]

• Chapter 3 of [2]

As usual we suppose that

φ̇t = f ◦ φt (0.1)

is driven by a vector field sufficiently smooth to guarantee the existence of a flow Φ : R×D 7→ D (D stand here as
a generic symbol for the state space e.g. D = Rn) in terms of which we express the solution of (0.1) starting from x
at time t = 0:

φt = Φt ◦ x (0.2)

1 Definition and basic properties

Definition 1.1. A set S ∈ D is called

• positively invariant if

Φt (S) ⊂ S ∀ t ≥ 0 (1.1)

• negatively invariant if

Φt (S) ⊂ S ∀ t ≤ 0 (1.2)

• invariant if

Φt (S) = S ∀ t ≤ 0 (1.3)

A positively invariant set can be constructed in two dimensions

(1.4)

when it is possible to identify a closed curve along which the vector field f is always pointing towards the interior of
the area encompassed by the curve.
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Definition 1.2. We call the

• ω-limit set of any x ∈ D the set

ω(x) =

{
y ∈ D | lim

n↑∞
Φtn(x) = y

}
(1.5)

for some sequence {tn}∞n=0 such that tn
n↑∞→ ∞.

• α-limit set of any x ∈ D the set

ω(x) =

{
y ∈ D | lim

n↑∞
Φtn(x) = y

}
(1.6)

for some sequence {tn}∞n=0 such that tn
n↑∞→ −∞.

Obvious examples of ω (α) sets are asymptotically stable (unstable) fixed point.

Proposition 1.1. Let S positively invariant and compact. Then for any x ∈ S, ω(x) enjoys the following properties

1. it is not empty: ω(x) 6= ∅;

2. it is closed;

3. it is invariant under the flow: Φt ◦ ω(x) = ω ◦Φt(x) for any t;

4. it is connected;

Proof.

1. Let some sequence {tn}∞n=0 such that tn
n↑∞→ ∞ and define

xn := φtn(x) (1.7)

Since S is compact, it is always possible to extract a convergent sub-sequence {tnk
}∞k=0. By definition

lim
k↑∞

Φtnk
(x) ∈ ω(x) (1.8)

2. Let suppose x1 ∈/ ω(x). Then there must be a neighborhood U of x1 and a t1 > 0 such that Φt(x) ∈/ U for
any t ≥ t1. But this is equivalent to say that ω̄(x) is open. Hence ω(x) must be closed.

3. Let y ∈ ω(x) then by definition there exists a sequence {tn}∞n=0 such that tn
n↑∞→ ∞ (Note: we can always

choose such sequence to be monotone by extracting an increasing sub-sequence from the convergent sequence
obtained using compactness) for which

lim
n↑∞

Φtn(x) = y (1.9)

For any fixed n we can find a t ∈ R such that

t+ tn ≥ 0 (1.10)
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From the properties of the flow we must have

Φt+tn(x) =

{
Φt ◦Φtn(x)

Φtn ◦Φt(x)
(1.11)

Passing to the limit n ↑ ∞ we obtain the identity

Φt ◦ ω(x) = ω ◦Φt(x) (1.12)

which yields the claim.

4. The proof proceeds by “reductio ad absurdum”. Let us suppose

ω(x) = ω1(x) ∪ ω1(x) (1.13)

with ωi(x) ⊂ Ui, i = 1.2 and

Ū1 ∩ Ū2 = ∅ ω1(x) ∈ U1 ω2(x) ∈ U2 (1.14)

By continuity of Φt(·) given a to > 0 there exists a t > to such that

Φt(x) ∈ S/(U1 ∪ U1) (1.15)

hence we can construct a monotonically increasing sequence {tn}∞n=0 such that

Φtn(x) ∈ S/(U1 ∪ U1) (1.16)

Exploiting now the compactness of S we can always extract a sub-sequence convergent to some y ∈ S/(U1 ∪
U1). But in such a case y ∈ ω(x) by definition and we therefore reached a contradiction.

2 Periodic Orbits

Definition 2.1. A periodic orbit is an orbit forming a closed curveO inD. Equivalently, ifx ∈ D is not an equilibrium
point, and

ΦT (xo) = xo (2.1)

for some T > 0, then the orbit of xo is a periodic orbit with period T if furthermore

Φt(xo) 6= xo (2.2)

for all 0 < t < T .

Let φt = Φt(x) be a trajectory on a periodic orbit O. By Floquet theorem, the linearized flow

Ft := ∂x ⊗Φt(x) (2.3)
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factorizes as

Ft = Pt e
B t (2.4)

with Pt+T = Pt for all t. Since

φ̇t = Ft · φ̇0 (2.5)

it follows that the monodromy matrix

M := eBT (2.6)

always admit one unit eigenvalue in consequence of the chain of equalities

M · φ̇0 = φ̇T = φ̇0 (2.7)

Proposition 2.1. The eigenvalues of the monodromy matrix depend only upon the periodic obit and not upon individ-
ual trajectories on it

Proof. Let us compare two trajectories on the periodic orbit:

φt = Φt1(x) (2.8)

and

φ̃t = Φt(x̃) (2.9)

By the our hypothesis there must exist a t′ such that

φ̃t = Φt ◦Φt̃(x) = Φt+t̃(x) (2.10)

If we denote by F and F̃ the linearization of the flows we obtain

Ft+t̃ = F̃tFt̃ ⇒ F̃t = Ft+t̃F
−1
t̃

(2.11)

which implies that the matrices satisfy the similarity transformation

M̃ = PT+t̃ e
B(T+t̃) e−Bt̃ P−1

t̃
= Pt̃MP−1

t̃
(2.12)

The characteristic polynomial is therefore independent of the trajectory chosen

det(M̃− λ 1) = det(Pt̃MP−1
t̃
− λ 1) = det (M− λ 1) (2.13)

2.1 Poincaré map

Let x? be a point on a periodic orbit O.

Definition 2.2. A Poincaré section S is a differentiable sub-manifold of co-dimension one (i.e. if we are in d dimen-
sions it is a d− 1 dimensional set) containing x? and transverse to the flow of (0.1). This means that if we denote by
n(x) a vector field perpendicular to S for any x ∈ S then

n · f 6= 0 ∀x ∈ S

S

O

f

(2.14)

4



Given a Poincaré section we can define the first return time of the flow Φ of f to S as the map

τ : S 7→ (0,+∞] (2.15)

defined by

τ(x) = inf {t > 0 |x ∈ S & Φt(x) ∈ S} ∈ (2.16)

The return time is equal to infinity if the flow of x does not return to S at any further finite time. The existence of the
return time is guaranteed by the following proposition:

Proposition 2.2. Let H be an hyper-plane orthogonal to O at x?:

H :=
{
x ∈ Rd | (x− x?) · f(x?) = 0

}
(2.17)

Then there is a δ > 0 and a unique function τ(x), defined and continuously differentiable for any x in a ball Bδ(x?)
of radius δ centered at x?, such that

• τ(x?) = T ;

• Φτ(x)(x) for all x ∈ Bδ(x?)

Proof. The proof relies on the implicit function theorem. Namely the function

F (x, t) = [Φt(x)− x?] · f(x?) (2.18)

satisfies

F (x?, T ) = 0 (2.19)

and

(∂tF )(x?, T ) = Φ̇t(x?) · f(x?) =‖ f ‖2 (x?) > 0 (2.20)

Hence by implicit function theorem there must exist a ball Bδ(x?) where

F (x, τ ◦ x) = 0 (2.21)

or equivalently

0 = dF (x?, T ) = dx · (∂xF )(x?, T ) + dt ‖ f ‖2 (x?) (2.22)

the solution whereof for t ∼ T specifies the function τ .

We can therefore always hypothesize

S = H ∩ Bδ(x?) (2.23)

so that

(n · f)(x?)

(‖ n ‖‖ f ‖)(x?)
= 1 (2.24)
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Definition 2.3. We call Poincaré map the application

P : {x ∈ S | τ(x) < ∞} 7→ S (2.25)

defined by the relation

P (x) = Φτ(x)(x) (2.26)

Let us consider the linearization of the Poincaré in around x? ∈ S ∩O

P (x) = P (x?) + (∂x ⊗ P )(x?) · (x− x?) + h.o.t.

= x? + (∂x ⊗ P )(x?) · (x− x?) + h.o.t. (2.27)

We can now relate (∂x ⊗ P ) (x?) to the monodromy matrix

(∂x ⊗ P ) (x?) = f(x?)⊗ (∂xτ)(x?) + M (2.28)

or alternatively

M = (∂x ⊗ P ) (x?)− f(x?)⊗ (∂xτ)(x?) (2.29)

We know already that

M · f(x?) = f(x?) (2.30)

It is therefore expedient to introduce a frame of reference such that

e1 =
f(x?)

‖ f(x?) ‖
& ei ∈ S ∀ i = 2, . . . , d (2.31)

Furthermore if we choose S such that (2.24) holds we also have

e1 · ei = 0 ∀ i = 2, . . . , d (2.32)

and by hypothesis

P 1(x) := e1 · P (x) = 0 (2.33)

since by orthogonality any point on S has no projection over O. Hence

0 = ei · ∂xP 1(x) = e1 · [f(x?)⊗ (∂xτ)(x?) + M] · ei
=‖ f(x?) ‖ ei · (∂xτ)(x?) + e1 ·M · ei (2.34)

which contrasted with (2.30) yields

e1 · (∂xτ)(x?) = − 1

‖ f ‖ (x?)
(2.35)

More generally, the monodromy matrix takes the form

M =


1 − ‖ f ‖ (x?) e2 · (∂xτ)(x?) . . . − ‖ f ‖ (x?) ed · (∂xτ)(x?)
0
... (∂x⊥ ⊗ P )(x?)
0

 (2.36)

where (∂x⊥ ⊗ P )(x?) ∈ R(d−1)×(d−1) stands for the restriction of (∂x ⊗ P )(x?) to S. As the first column contains
only one non-vanishing entry the characteristic polynomial factorizes into the product

det (M−m 1) = (1−m) det (∂x⊥ ⊗ P −m 1) (2.37)

The conclusion is that the spectrum of the monodromy matrix satisfies

SpM = 1⊕ Sp (∂x⊥ ⊗ P )(x?) (2.38)

Remark 2.1. The factorization property (2.37) is a consequence of (2.30) alone.
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