Lecture 11: periodic orbits as limit sets

Introduction and notation

The expounded material can be found in

e Chapter 2 of [1]
e Chapter 3 of [2]
As usual we suppose that
b= f oo 0.1

is driven by a vector field sufficiently smooth to guarantee the existence of a flow ®: R x D +— D (D stand here as
a generic symbol for the state space e.g. D = R") in terms of which we express the solution of (0.1) starting from x
at time ¢ = 0:

¢, =B oz 0.2)

1 Definition and basic properties

Definition 1.1. A set S € D is called

e positively invariant if

®,(S)cCS vVt >0 (1.1)
e negatively invariant if
®,(S)cCS vVt <0 (1.2)
e invariant if
P, (S =S vVt <0 (1.3)
A positively invariant set can be constructed in two dimensions
(1.4)

when it is possible to identify a closed curve along which the vector field f is always pointing towards the interior of
the area encompassed by the curve.



Definition 1.2. We call the

w-limit set of any x € D the set

w(x) = {y €D] liTm ®; (x) = y} (1.5)

for some sequence {t,}," , such that t, "% .

a-limit set of any x € D the set

w(x) = {y €D] liTm ®; (x) = y} (1.6)

for some sequence {t,} ", such that t, .

Obvious examples of w («) sets are asymptotically stable (unstable) fixed point.

Proposition 1.1. Let S positively invariant and compact. Then for any x € S, w(x) enjoys the following properties

1.
2.
3.
4.

Proof.

1.

it is not empty: w(x) # 0;
it is closed;

it is invariant under the flow: ®; o w(x) = w o ®y(x) for any t;
it is connected;

nﬁ;o

Let some sequence {t,},, such that ¢, oo and define

T, = ¢y () (1.7
Since S is compact, it is always possible to extract a convergent sub-sequence {t,, },- . By definition

lim &, (z) € w(z) (1.8)

Let suppose ®; ¢ w(x). Then there must be a neighborhood U of ; and a t; > 0 such that ®;(x) ¢ U for
any ¢t > ¢1. But this is equivalent to say that w(x) is open. Hence w(a) must be closed.

Let y € w(x) then by definition there exists a sequence {t,},- , such that ¢, LS (Note: we can always

choose such sequence to be monotone by extracting an increasing sub-sequence from the convergent sequence
obtained using compactness) for which

lim @, (z) =y (1.9)

ntoo

For any fixed n we can find a ¢ € R such that

t+t, >0 (1.10)



From the properties of the flow we must have
(I)t ] (I'tn (w)
P, (z) =
(ﬁtn o ‘I’t ($)
Passing to the limit n 1 oo we obtain the identity
b, ow(x) = wo Py(x)
which yields the claim.
4. The proof proceeds by “reductio ad absurdum”. Let us suppose

w(x) = wi(x) Uwi(x)

with w;(x) C U;, i = 1.2 and
Z/_Il ﬂ Z/_{Q — @ wi(x) € Uy wa () € Us

By continuity of ®,(-) given at, > 0 there exists at > t, such that
@t(m) € S/(L[l @] ul)
hence we can construct a monotonically increasing sequence {t,}, -, such that

<I>tn(ac) € S/(Z/ﬁ UZ/Il)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

Exploiting now the compactness of S we can always extract a sub-sequence convergent to some y € S/(Uy U

Uy). Butin such a case y € w(x) by definition and we therefore reached a contradiction.

2 Periodic Orbits

O]

Definition 2.1. A periodic orbit is an orbit forming a closed curve O in D. Equivalently, if x € D is not an equilibrium

point, and
®br(z,) = x,

for someT' > 0, then the orbit of , is a periodic orbit with period T if furthermore
Q4 (x0) # o

forall0 <t < T.

Let ¢, = ®,(x) be a trajectory on a periodic orbit O. By Floquet theorem, the linearized flow

Ft = Bw (%9 @t(’l:)

2.1

(2.2)

(2.3)



factorizes as

Fr =P eB! (2.4)
with P.yr = Py for all ¢. Since
¢ =Fi- Py (2.5)
it follows that the monodromy matrix
M := BT (2.6)

always admit one unit eigenvalue in consequence of the chain of equalities
M- d’o = ¢ET = Q'so (2.7)

Proposition 2.1. The eigenvalues of the monodromy matrix depend only upon the periodic obit and not upon individ-
ual trajectories on it

Proof. Let us compare two trajectories on the periodic orbit:

¢, = P4, (x) (2.8)
and
¢, = Bi(Z) (2.9)
By the our hypothesis there must exist a ¢’ such that
¢, = B0 B(z) = @, ;(x) (2.10)
If we denote by F and F the linearization of the flows we obtain
Foo; = FiF; = Fo=F, F" (2.11)
which implies that the matrices satisfy the similarity transformation
M =Py ;BT+D ~Blp—l — pMprt (2.12)
The characteristic polynomial is therefore independent of the trajectory chosen
det(M — A1) = det(P;MP;! — A1) = det (M — A1) (2.13)
O

2.1 Poincaré map

Let z, be a point on a periodic orbit O.

Definition 2.2. A Poincaré section S is a differentiable sub-manifold of co-dimension one (i.e. if we are in d dimen-
sions it is a d — 1 dimensional set) containing x, and transverse to the flow of (0.1). This means that if we denote by
n(x) a vector field perpendicular to S for any x € S then

n-f#0 Ve € S (2.14)




Given a Poincaré section we can define the first return time of the flow ® of f to S as the map
7: S — (0, +o0] (2.15)
defined by
T(x)=inf{t > 0|z € S & ®i(x) € S} € (2.16)

The return time is equal to infinity if the flow of = does not return to S at any further finite time. The existence of the
return time is guaranteed by the following proposition:

Proposition 2.2. Let H be an hyper-plane orthogonal to O at x:
H .= {az e R (z —z,) - f() :0} 2.17)

Then there is a 0 > 0 and a unique function T(x), defined and continuously differentiable for any x in a ball Bs(x.)
of radius J centered at x, such that

o T(x,)=1T;
o &, (x)forallx € Bs(xy)

Proof. The proof relies on the implicit function theorem. Namely the function

F(x,1) = [®y(x) — z.] - f(z.) (2.18)
satisfies
F(x,,T) =0 (2.19)
and
(OuF) (@, T) = D) - f @) =I| f |7 (=4) > 0 (2.20)

Hence by implicit function theorem there must exist a ball Bs(x,) where

Flx,Trox)=0 (2.21)

or equivalently
0=dF(x,,T) = da - (0 F) (2, T) + dt || f | (z) (2.22)
the solution whereof for ¢ ~ T specifies the function 7. O

We can therefore always hypothesize
S =HnNBs(xy) (2.23)
so that
n- f)(x

T i 71 = o2y



Definition 2.3. We call Poincaré map the application
P: {x e S|7(x) < o0} —S (2.25)
defined by the relation
P(z) = @, () () (2.26)
Let us consider the linearization of the Poincaré in around z, € SN O

P(x) = P(x,) + (0z ® P)(x4) - (x — x,) + hoo.t.

=z, + (0z ® P)(x4) - (x — ) + hooot. (2.27)
We can now relate (0 ® P) () to the monodromy matrix
(02 @ P) (zx) = f(x4) @ (027)(2s) + M (2.28)
or alternatively
M= (9 ® P) (@.) — f(@.) @ (0a7)(@.) (2.29)
We know already that
M- f(zs) = f(xs) (2.30)
It is therefore expedient to introduce a frame of reference such that
61:”;223” & e, €S Vi=2...,d (2.31)
Furthermore if we choose S such that (2.24) holds we also have
ejreg=0  Vi=2,...,d (2.32)
and by hypothesis
Pl(x):=e;-P(x)=0 (2.33)

since by orthogonality any point on S has no projection over O. Hence
0=-e; 0P () =€ [f(x:) ® (0x7)(xx) + M] - &;

= f(xx) || € (Ox7)(xs) +€1-M-€; (2.34)
which contrasted with (2.30) yields
1
€1 (0g7)(Ty) = ——5—— (2.35)
11 ()
More generally, the monodromy matrix takes the form
L = £ (z.) ez (O7)(2s) = F 1l (=) ea (0z7) ()
0
M=, (2.36)

(02, ® P)(x)

where (0, ® P)(x,) € R@-1>(4=1) stands for the restriction of (9, @ P)(x,) to S. As the first column contains
only one non-vanishing entry the characteristic polynomial factorizes into the product

det (M —m1l) = (1—m)det (9, ® P—m1) (2.37)
The conclusion is that the spectrum of the monodromy matrix satisfies
SpM =1& Sp (0, ® P)(xy) (2.38)
Remark 2.1. The factorization property (2.37) is a consequence of (2.30) alone.



References

[1] N. Berglund. Perturbation theory of dynamical systems, 2001, math/0111178.

[2] L. Perko. Differential Equations and Dynamical Systems. Springer, 3rd edition, 2006.



