Lecture 11: periodic orbits as limit sets

Introduction and notation

The expounded material can be found in

- Chapter 2 of [1]
- Chapter 3 of [2]

As usual we suppose that

$$\dot{\boldsymbol{\phi}}_t = \boldsymbol{f} \circ \boldsymbol{\phi}_t \tag{0.1}$$

is driven by a vector field **sufficiently smooth** to guarantee the existence of a flow $\Phi : \mathbb{R} \times \mathcal{D} \mapsto \mathcal{D}$ (\mathcal{D} stand here as a generic symbol for the state space e.g. $\mathcal{D} = \mathbb{R}^n$) in terms of which we express the solution of (0.1) starting from x at time t = 0:

$$\boldsymbol{\phi}_t = \boldsymbol{\Phi}_t \circ \boldsymbol{x} \tag{0.2}$$

1 Definition and basic properties

Definition 1.1. A set $S \in D$ is called

• positively invariant if

$$\Phi_t(\mathcal{S}) \subset \mathcal{S} \qquad \forall t \ge 0 \tag{1.1}$$

• negatively invariant if

$$\Phi_t(\mathcal{S}) \subset \mathcal{S} \qquad \forall t \le 0 \tag{1.2}$$

• invariant if

$$\Phi_t(\mathcal{S}) = \mathcal{S} \qquad \forall t \le 0 \tag{1.3}$$

A positively invariant set can be constructed in two dimensions

when it is possible to identify a closed curve along which the vector field f is always pointing towards the interior of the area encompassed by the curve.

Definition 1.2. We call the

• ω -limit set of any $x \in \mathcal{D}$ the set

$$\omega(\boldsymbol{x}) = \left\{ \boldsymbol{y} \in \mathcal{D} \mid \lim_{n \uparrow \infty} \boldsymbol{\Phi}_{t_n}(\boldsymbol{x}) = \boldsymbol{y} \right\}$$
(1.5)

for some sequence $\{t_n\}_{n=0}^{\infty}$ such that $t_n \stackrel{n\uparrow\infty}{\to} \infty$.

• α -limit set of any $x \in \mathcal{D}$ the set

$$\omega(\boldsymbol{x}) = \left\{ \boldsymbol{y} \in \mathcal{D} \mid \lim_{n \uparrow \infty} \boldsymbol{\Phi}_{t_n}(\boldsymbol{x}) = \boldsymbol{y} \right\}$$
(1.6)

for some sequence $\{t_n\}_{n=0}^{\infty}$ such that $t_n \stackrel{n\uparrow\infty}{\to} -\infty$.

Obvious examples of ω (α) sets are asymptotically stable (unstable) fixed point.

Proposition 1.1. Let S positively invariant and compact. Then for any $x \in S$, $\omega(x)$ enjoys the following properties

- *1. it is not empty:* $\omega(\mathbf{x}) \neq \emptyset$ *;*
- 2. it is <u>closed</u>;
- *3. it is invariant under the flow:* $\Phi_t \circ \omega(\mathbf{x}) = \omega \circ \Phi_t(\mathbf{x})$ *for any t;*
- 4. it is connected;

Proof.

1. Let some sequence $\{t_n\}_{n=0}^{\infty}$ such that $t_n \stackrel{n\uparrow\infty}{\to} \infty$ and define

$$\boldsymbol{x}_n := \boldsymbol{\phi}_{t_n}(\boldsymbol{x}) \tag{1.7}$$

Since S is compact, it is always possible to extract a convergent sub-sequence $\{t_{n_k}\}_{k=0}^{\infty}$. By definition

$$\lim_{k \uparrow \infty} \boldsymbol{\Phi}_{t_{n_k}}(\boldsymbol{x}) \in \omega(\boldsymbol{x}) \tag{1.8}$$

- 2. Let suppose $x_1 \notin \omega(x)$. Then there must be a neighborhood \mathcal{U} of x_1 and a $t_1 > 0$ such that $\Phi_t(x) \notin \mathcal{U}$ for any $t \ge t_1$. But this is equivalent to say that $\overline{\omega}(x)$ is open. Hence $\omega(x)$ must be closed.
- 3. Let $y \in \omega(x)$ then by definition there exists a sequence $\{t_n\}_{n=0}^{\infty}$ such that $t_n \stackrel{n\uparrow\infty}{\to} \infty$ (Note: we can always choose such sequence to be monotone by extracting an increasing sub-sequence from the convergent sequence obtained using compactness) for which

$$\lim_{n \uparrow \infty} \boldsymbol{\Phi}_{t_n}(\boldsymbol{x}) = \boldsymbol{y} \tag{1.9}$$

For any fixed n we can find a $t \in \mathbb{R}$ such that

$$t + t_n \ge 0 \tag{1.10}$$

From the properties of the flow we must have

$$\boldsymbol{\Phi}_{t+t_n}(\boldsymbol{x}) = \begin{cases} \boldsymbol{\Phi}_t \circ \boldsymbol{\Phi}_{t_n}(\boldsymbol{x}) \\ \boldsymbol{\Phi}_{t_n} \circ \boldsymbol{\Phi}_t(\boldsymbol{x}) \end{cases}$$
(1.11)

Passing to the limit $n \uparrow \infty$ we obtain the identity

$$\Phi_t \circ \omega(\boldsymbol{x}) = \omega \circ \Phi_t(\boldsymbol{x}) \tag{1.12}$$

which yields the claim.

4. The proof proceeds by "reductio ad absurdum". Let us suppose

$$\omega(\boldsymbol{x}) = \omega_1(\boldsymbol{x}) \cup \omega_1(\boldsymbol{x}) \tag{1.13}$$

with $\omega_i(\boldsymbol{x}) \subset \mathcal{U}_i, i = 1.2$ and

By continuity of $\Phi_t(\cdot)$ given a $t_o > 0$ there exists a $t > t_o$ such that

$$\mathbf{\Phi}_t(\mathbf{x}) \in \mathcal{S}/(\mathcal{U}_1 \cup \mathcal{U}_1) \tag{1.15}$$

hence we can construct a monotonically increasing sequence $\{t_n\}_{n=0}^{\infty}$ such that

$$\boldsymbol{\Phi}_{t_n}(\boldsymbol{x}) \in \mathcal{S}/(\mathcal{U}_1 \cup \mathcal{U}_1) \tag{1.16}$$

Exploiting now the compactness of S we can always extract a sub-sequence convergent to some $y \in S/(U_1 \cup U_1)$. But in such a case $y \in \omega(x)$ by definition and we therefore reached a contradiction.

2 Periodic Orbits

Definition 2.1. A periodic orbit is an orbit forming a closed curve O in D. Equivalently, if $x \in D$ is <u>not</u> an equilibrium point, and

$$\boldsymbol{\Phi}_T(\boldsymbol{x}_o) = \boldsymbol{x}_o \tag{2.1}$$

for some T > 0, then the orbit of x_o is a periodic orbit with period T if furthermore

$$\boldsymbol{\Phi}_t(\boldsymbol{x}_o) \neq \boldsymbol{x}_o \tag{2.2}$$

for all 0 < t < T.

Let $\phi_t = \Phi_t(x)$ be a trajectory on a periodic orbit O. By Floquet theorem, the linearized flow

$$\mathsf{F}_t := \partial_{\boldsymbol{x}} \otimes \boldsymbol{\Phi}_t(\boldsymbol{x}) \tag{2.3}$$

factorizes as

$$\mathsf{F}_t = \mathsf{P}_t \, e^{\mathsf{B} \, t} \tag{2.4}$$

with $P_{t+T} = P_t$ for all t. Since

$$\dot{\boldsymbol{\phi}}_t = \boldsymbol{\mathsf{F}}_t \cdot \dot{\boldsymbol{\phi}}_0 \tag{2.5}$$

it follows that the monodromy matrix

$$\mathsf{M} := e^{\mathsf{B}T} \tag{2.6}$$

always admit one unit eigenvalue in consequence of the chain of equalities

$$\mathsf{M} \cdot \dot{\phi}_0 = \dot{\phi}_T = \dot{\phi}_0 \tag{2.7}$$

Proposition 2.1. The eigenvalues of the monodromy matrix depend only upon the periodic obit and not upon individual trajectories on it

Proof. Let us compare two trajectories on the periodic orbit:

$$\boldsymbol{\phi}_t = \boldsymbol{\Phi}_{t_1}(\boldsymbol{x}) \tag{2.8}$$

and

$$\tilde{\boldsymbol{\phi}}_t = \boldsymbol{\Phi}_t(\tilde{\boldsymbol{x}}) \tag{2.9}$$

By the our hypothesis there must exist a t' such that

$$\tilde{\phi}_t = \Phi_t \circ \Phi_{\tilde{t}}(\boldsymbol{x}) = \Phi_{t+\tilde{t}}(\boldsymbol{x})$$
(2.10)

If we denote by F and $\tilde{\mathsf{F}}$ the linearization of the flows we obtain

$$\mathsf{F}_{t+\tilde{t}} = \tilde{\mathsf{F}}_t \mathsf{F}_{\tilde{t}} \qquad \Rightarrow \qquad \tilde{\mathsf{F}}_t = \mathsf{F}_{t+\tilde{t}} \mathsf{F}_{\tilde{t}}^{-1} \tag{2.11}$$

which implies that the matrices satisfy the similarity transformation

$$\tilde{\mathsf{M}} = \mathsf{P}_{T+\tilde{t}} e^{\mathsf{B}(T+\tilde{t})} e^{-\mathsf{B}\tilde{t}} \mathsf{P}_{\tilde{t}}^{-1} = \mathsf{P}_{\tilde{t}} \mathsf{M} \, \mathsf{P}_{\tilde{t}}^{-1}$$
(2.12)

The characteristic polynomial is therefore independent of the trajectory chosen

$$\det(\tilde{\mathsf{M}} - \lambda 1) = \det(\mathsf{P}_{\tilde{t}}\mathsf{M}\,\mathsf{P}_{\tilde{t}}^{-1} - \lambda 1) = \det(\mathsf{M} - \lambda 1)$$
(2.13)

2.1 Poincaré map

Let x_{\star} be a point on a periodic orbit O.

Definition 2.2. A Poincaré section S is a differentiable sub-manifold of co-dimension one (i.e. if we are in d dimensions it is a d-1 dimensional set) containing x_* and transverse to the flow of (0.1). This means that if we denote by n(x) a vector field perpendicular to S for any $x \in S$ then

$$n \cdot f \neq 0$$
 $\forall x \in S$ (2.14)

 $c \not = f$

Given a Poincaré section we can define the first return time of the flow Φ of f to S as the map

$$\tau \colon \mathcal{S} \mapsto (0, +\infty] \tag{2.15}$$

defined by

$$\tau(\boldsymbol{x}) = \inf \left\{ t > 0 \, | \, \boldsymbol{x} \in \mathbf{S} \, \& \, \boldsymbol{\Phi}_t(\boldsymbol{x}) \in \mathbf{S} \right\} \in$$
(2.16)

The return time is equal to infinity if the flow of x does not return to S at any further finite time. The existence of the return time is guaranteed by the following proposition:

Proposition 2.2. Let H be an hyper-plane orthogonal to O at x_{\star} :

$$\mathbf{H} := \left\{ \boldsymbol{x} \in \mathbb{R}^d \,|\, (\boldsymbol{x} - \boldsymbol{x}_\star) \cdot \boldsymbol{f}(\boldsymbol{x}_\star) = 0 \right\}$$
(2.17)

Then there is a $\delta > 0$ and a unique function $\tau(\mathbf{x})$, defined and continuously differentiable for any \mathbf{x} in a ball $B_{\delta}(\mathbf{x}_{\star})$ of radius δ centered at \mathbf{x}_{\star} , such that

- $\tau(\boldsymbol{x}_{\star}) = T;$
- $\Phi_{\tau(\boldsymbol{x})}(\boldsymbol{x})$ for all $\boldsymbol{x} \in B_{\delta}(\boldsymbol{x}_{\star})$

Proof. The proof relies on the implicit function theorem. Namely the function

$$F(\boldsymbol{x},t) = [\boldsymbol{\Phi}_t(\boldsymbol{x}) - \boldsymbol{x}_\star] \cdot \boldsymbol{f}(\boldsymbol{x}_\star)$$
(2.18)

satisfies

$$F(\boldsymbol{x}_{\star},T) = 0 \tag{2.19}$$

and

$$(\partial_t F)(\boldsymbol{x}_{\star},T) = \dot{\boldsymbol{\Phi}}_t(\boldsymbol{x}_{\star}) \cdot \boldsymbol{f}(\boldsymbol{x}_{\star}) = \|\boldsymbol{f}\|^2 (\boldsymbol{x}_{\star}) > 0$$
(2.20)

Hence by implicit function theorem there must exist a ball $B_{\delta}(x_{\star})$ where

$$F(\boldsymbol{x},\tau\circ\boldsymbol{x})=0\tag{2.21}$$

or equivalently

$$0 = \mathrm{d}F(\boldsymbol{x}_{\star}, T) = \mathrm{d}\boldsymbol{x} \cdot (\partial_{\boldsymbol{x}}F)(\boldsymbol{x}_{\star}, T) + \mathrm{d}t \parallel \boldsymbol{f} \parallel^{2} (\boldsymbol{x}_{\star})$$
(2.22)

the solution whereof for $t \sim T$ specifies the function τ .

We can therefore always hypothesize

$$S = H \cap B_{\delta}(\boldsymbol{x}_{\star}) \tag{2.23}$$

so that

$$\frac{(\boldsymbol{n} \cdot \boldsymbol{f})(\boldsymbol{x}_{\star})}{(\parallel \boldsymbol{n} \parallel \parallel \boldsymbol{f} \parallel)(\boldsymbol{x}_{\star})} = 1$$
(2.24)

Definition 2.3. We call Poincaré map the application

$$\boldsymbol{P} \colon \{ \boldsymbol{x} \in \mathcal{S} \, | \, \tau(\boldsymbol{x}) < \infty \} \mapsto \mathcal{S}$$

$$(2.25)$$

defined by the relation

$$\boldsymbol{P}(\boldsymbol{x}) = \boldsymbol{\Phi}_{\tau(\boldsymbol{x})}(\boldsymbol{x}) \tag{2.26}$$

Let us consider the linearization of the Poincaré in around $x_\star \in \mathrm{S} \cap \mathrm{O}$

$$P(x) = P(x_{\star}) + (\partial_{x} \otimes P)(x_{\star}) \cdot (x - x_{\star}) + \text{h.o.t.}$$

= $x_{\star} + (\partial_{x} \otimes P)(x_{\star}) \cdot (x - x_{\star}) + \text{h.o.t.}$ (2.27)

We can now relate $(\partial_{\boldsymbol{x}} \otimes \boldsymbol{P})(\boldsymbol{x}_{\star})$ to the monodromy matrix

$$(\partial_{\boldsymbol{x}} \otimes \boldsymbol{P})(\boldsymbol{x}_{\star}) = \boldsymbol{f}(\boldsymbol{x}_{\star}) \otimes (\partial_{\boldsymbol{x}}\tau)(\boldsymbol{x}_{\star}) + \mathsf{M}$$
(2.28)

or alternatively

$$\mathsf{M} = (\partial_{\boldsymbol{x}} \otimes \boldsymbol{P})(\boldsymbol{x}_{\star}) - \boldsymbol{f}(\boldsymbol{x}_{\star}) \otimes (\partial_{\boldsymbol{x}}\tau)(\boldsymbol{x}_{\star})$$
(2.29)

We know already that

$$\mathsf{M} \cdot \boldsymbol{f}(\boldsymbol{x}_{\star}) = \boldsymbol{f}(\boldsymbol{x}_{\star}) \tag{2.30}$$

It is therefore expedient to introduce a frame of reference such that

$$\boldsymbol{e}_1 = \frac{\boldsymbol{f}(\boldsymbol{x}_{\star})}{\parallel \boldsymbol{f}(\boldsymbol{x}_{\star}) \parallel} \qquad \& \qquad \boldsymbol{e}_i \in \mathbf{S} \quad \forall i = 2, \dots, d$$
(2.31)

Furthermore if we choose S such that (2.24) holds we also have

$$\boldsymbol{e}_1 \cdot \boldsymbol{e}_i = 0 \qquad \forall \, i = 2, \dots, d \tag{2.32}$$

and by hypothesis

$$P^{1}(\boldsymbol{x}) := \boldsymbol{e}_{1} \cdot \boldsymbol{P}(\boldsymbol{x}) = 0 \tag{2.33}$$

since by orthogonality any point on S has no projection over O. Hence

$$0 = \boldsymbol{e}_i \cdot \partial_{\boldsymbol{x}} P^1(\boldsymbol{x}) = \boldsymbol{e}_1 \cdot [\boldsymbol{f}(\boldsymbol{x}_\star) \otimes (\partial_{\boldsymbol{x}} \tau)(\boldsymbol{x}_\star) + \mathsf{M}] \cdot \boldsymbol{e}_i$$

= $\| \boldsymbol{f}(\boldsymbol{x}_\star) \| \boldsymbol{e}_i \cdot (\partial_{\boldsymbol{x}} \tau)(\boldsymbol{x}_\star) + \boldsymbol{e}_1 \cdot \mathsf{M} \cdot \boldsymbol{e}_i$ (2.34)

which contrasted with (2.30) yields

$$\boldsymbol{e}_{1} \cdot (\partial_{\boldsymbol{x}} \tau)(\boldsymbol{x}_{\star}) = -\frac{1}{\parallel \boldsymbol{f} \parallel (\boldsymbol{x}_{\star})}$$
(2.35)

More generally, the monodromy matrix takes the form

$$\mathsf{M} = \begin{bmatrix} 1 & - \| \mathbf{f} \| (\mathbf{x}_{\star}) \mathbf{e}_{2} \cdot (\partial_{\mathbf{x}} \tau)(\mathbf{x}_{\star}) & \dots & - \| \mathbf{f} \| (\mathbf{x}_{\star}) \mathbf{e}_{d} \cdot (\partial_{\mathbf{x}} \tau)(\mathbf{x}_{\star}) \\ \\ \vdots \\ 0 \\ 0 \\ \end{bmatrix}$$
(2.36)

where $(\partial_{\boldsymbol{x}_{\perp}} \otimes \boldsymbol{P})(\boldsymbol{x}_{\star}) \in \mathbb{R}^{(d-1) \times (d-1)}$ stands for the restriction of $(\partial_{\boldsymbol{x}} \otimes \boldsymbol{P})(\boldsymbol{x}_{\star})$ to S. As the first column contains only one non-vanishing entry the characteristic polynomial factorizes into the product

$$\det (\mathsf{M} - m\mathbf{1}) = (1 - m) \det (\partial_{\boldsymbol{x}_{\perp}} \otimes \boldsymbol{P} - m\mathbf{1})$$
(2.37)

The conclusion is that the spectrum of the monodromy matrix satisfies

$$\operatorname{Sp} \mathsf{M} = 1 \oplus \operatorname{Sp} \left(\partial_{\boldsymbol{x}_{\perp}} \otimes \boldsymbol{P}\right)(\boldsymbol{x}_{\star}) \tag{2.38}$$

Remark 2.1. The factorization property (2.37) is a consequence of (2.30) alone.

References

- [1] N. Berglund. Perturbation theory of dynamical systems, 2001, math/0111178.
- [2] L. Perko. Differential Equations and Dynamical Systems. Springer, 3rd edition, 2006.