Lecture 09: Lyapunov Exponents

1 Introduction

We start this lecture by asking the question: What is chaoticity? Chaos tefaicomplicated dynamical
behaviour. In the early times of dynamical system theory, the “chaoticitg’austomarily related with
astrong dependence on the initial conditions

X(t) 4

(x+h)(t)

Figure 1: Exponential separation of nearby trajectories.

In this lecture we will introduce the Lyapun@haracteristicexponents, which characterise quanti-
tatively the chaoticity of a given dynamical system.

2 Preliminaries

2.1 Invariant Measures
Definition 2.1. Let f be a measurable majp/ — M. A measurg: is called invariant forf if

p(f~HE) = w(E) (2.1)
for every measurable séi.

An important class of measures are those that are Lebesgue-integrable
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Definition 2.2. A measure: is called absolutely continuous (with respect to the Lebesgue measure) if
w(dx) = h(z)dx with hel'; (2.2)
thatis, [ h(z)dz < cc.

With the help of the ergodic theorem (see next section), which says thatiaereges of observables
are equal to space averages, the invariant measures of a dynarmsteat €an be empirically constructed
by density histograms.

Definition 2.3. Let A be a subset of the phase spdzand f a measurable map. The average time the
“system state” spends id over a time interva[0, N] starting from the initial “state”xg is

N-1

Ao )= 57 xa (F10)) 23)
=0

wherey 4 denotes the characteristic function on the det

One is interested in the larg&-limit of this quantity. Assuming that the limit exists, and denoting it
by 1, (A) then it is easy to check that:

1. the limit also exists foyf (zo) and for anyy € f~!(xo) = {z|f(2) = z0}.

2. the limit also exists ifd is replaced byf ~!(A) and has the same value, namely

tao (f 71 (A)) = prag(A) ; (2.4
this is indeed true since4 (f/(z)) = Lifand only ifz € £/ (o).

Remark 2.1. If one assumes that,,(A) does not depend ar, then, in the limit of large the his-
togram Ay (zg, A) resembles an invariant measure.

Definition 2.4.
(2.5)
2.2 The ergodic theorem

In the previous section, the histogram (2.3) is a time average of the ch&stctincion of the bin
of measured, which means that one counts how often the orbit visits a given intdrvalhus, the
observable/{(x()) inside the sum of (2.3 takes valuiéf = € I and0 otherwise.

[1 The ergodic theorentells us that this procedure converges to the invariant measure for
almost every initial condition:.

Theorem 2.2. Birkhoff’s ergodic theoremLet i be an invariant probability measure for the mggon
the spaceX). Leth be an integrable function o : fX dp < oo. Define the partial sums:

n—1
Sa(x) =Y h(f' () - (2.6)
=0
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1. For u-almost every: one has

nh_}ngo %Sn(x) = h*(x) . 2.7)
2. The functiorh* is f-invariant
h(x) = h*(f(z)) - (2.8)
3. One has
/h*(:c)d,u: /h(:c)d,u. (2.9)

[J The notion ofu-almost everyr means for a set of of y-measurd.

[J The spaceX with measure. is called aprobability spacef [, du = 1. In this caseu is
called aprobability measure

If the limit in the ergodic theorem is independent of the initial condition then thesarea is
ergodic.1

Definition 2.5. Given a mapf on a spaceX, an invariant probability measurg is called ergodic with
respect tof if f~1(E) = E impliesu(E) = 1 or u(E) = 0. In other words, the only invariant sefs
are those of measureor 1, and in particular, it is not possible that a part of the space is invariant.

The consequences of having an ergodic megswan be stated in the following
Lemma 2.3. Consider a dynamical systefyi, X) with invariant measure..

i) If u is ergodic, then for any integrable functiénthe limit function given by the ergodic theorem
is almost surely constant, and furthermore

N
) = Jim o S @) = [ it (2.10)
j=0

i) If, for all integrable h, the functionh(z) is almost surely constant, thenis ergodic.
iii) If pis ergodic, then any invariant function jsalmost surely constant.

iv) If every invariant function is almost surely constant, theis ergodic.

3 Lyapunov exponents

We discuss the concept of Lyapunov exponents for discrete time mapsonsfeler a differentiable map
fin Q. For simplicity we will fix Q = R¢, thed-dimensional Euclidean space.

Let h be a vector in2 such thath| < 1, and consider two nearby trajectories with initial conditions
x andx + h. Our aim is to estimate the behaviour of the initial edidn time. At timen, the magnitude
of the initial error is

[f"(x+h) — [ )|, (3.1)
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wheref"(x) = fo fo---0 f(x). As long as the error does not grow too much, we can expect to have
—_—

areasonable estim%‘?én%sf the error at timfeom the first-order Taylor expansion
f"(x+h) = f*(x) = Dxf"h+ O(h?) (3.2)
whereD, f™ denotes the differential of the majy at pointx. Applying the chain-rule one finds
Dxf™ =Dpn1yf  Dpn209f - - Dxf - (3.3)

One has to be careful since in general, the matrices in this product domotwate. Let’s first take the
simple one-dimensional example. In this case the differentials (3.3) commute and

n—1
@ =1 F (F@) . (3.4)
j=0

We then look for the exponential growth rate, namely
1 1 n—1 '
~log |f"(x)| = ~ > log|f (F/(»)] - (3.5)
§=0

Finally, assuming thdbg | /’| is for 1. an ergodic invariant measure, we can use the ergodic theorem
(2.2) to conclude that on a set of fullmeasure, the temporal average converges, and moreover

AMz) = 7%1_1(}17711 % log ‘f”'(a:)’ = /log ’f" dpu . (3.6)

The limit X is calle the Lyapunov exponent of the mAgor the measure at pointz.

[J The Lyapunov exponerni(z) measures the rate of separation of infinitesimally close initial
points arounbdt.

4 Existence of Lyapunov Exponents in higher dimensions

As mentioned before, the existence of the Lyapunov exponents in highensions is far more difficult
since the differential (3.3) is in general a product of noncommutative tefmén the one-dimensional
case, if for an ergodic invariant measurand a mapf the limit

1
lim — log|[ D /|| (4.)
n—nnmn

existsy-almost surely then, if this quantity is positive some initially small errors are reqpially am-
plified while if it is negative or zero then initial errors cannot grow venyidéy.
We note that in general, for a fixed veclor

|Dsf™h||? = (W(Df™)! Dy f"h) (4.2)

where(-) denotes the scalar productitf and A! is the transpose of the matri%. The studied of the
exponential growth of the matrix in the r.h.s. of (4.2) led Oseledec to formulattiowing



EXISTENCE OFLYAPUNOV EXPONENTS IN HIGHER DIMENSIONS 5

Theorem 4.1. Oseledec’s theorem
Let 4 be an ergodic invariant measure for a diffeomorphigrof a compact manifold2. Then for
pu-almost every initial conditiom:, the sequence of symmetric nonnegative matrices

1/2n

(Do f™)' Do f™)

converges to a symmetric nonnegative matrifindependent of:). Denote by\y > A\; > ... > \; the
strictly decreasing sequence of the logarithms of the eigenvalues of thig thésome of them may have
nontrivial multiplicity).

These numbers are called the Lyapunov exponents of the/fagthe ergodic invariant measure.
Moreover, foru-almost every point there is a decreasing sequence of subspaces

Q= Eo(z) C Er(z) C -+ S Ep(z) © Egqa(z) = {0},
satisfying ft-almost surely)
Dy fEj(z) = Ej(f(x))
and for anyj € {0,...,k} and anyh € E;(z) E;1(x) one has
1
lim ~ log|| D, f"h|| = A;
n—,mn
[J Note that the theorem says that
| D f™ B[ ~ ™.

There may be large or small (subexponential) prefactors which camdeméh andzz.

CIN D
NIZAV)

Figure 2: lllustration of the streching and contracting directions.

t

[J Positive Lyapunov exponents are obviously responsible for sendiéipendence on initial
conditions. Their corresponding “eigen” directions are tangent to ttietaor”.
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[ Transversally to the attractor one gets contracting directions, namely veggtpunov
exponents.

] If the mapf is area-preserving

||D.f"|| = 1foralln,.

Therefore we have that

k
> A=0.

§=0
In words, “chaotic dynamics of Hamiltonian systems will strecht(contract)mekialong the
tangent(perpendicular) direction of the invariant measure set”.

[ If the mapf is dissipative, meaning that

||D,f"]| < 1foralln,

the Lyapunov exponents will satisfy

k
D> <0,
=0

Note that this does not mean that all Lyapunov exponents are negative.

4.1 lterative calculation of the largest Lyapunov exponents
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