
Lecture 09: Lyapunov Exponents

1 Introduction

We start this lecture by asking the question: What is chaoticity? Chaos refers to a complicated dynamical
behaviour. In the early times of dynamical system theory, the “chaoticity” was customarily related with
astrong dependence on the initial conditions.
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Figure 1: Exponential separation of nearby trajectories.

In this lecture we will introduce the Lyapunovcharacteristicexponents, which characterise quanti-
tatively the chaoticity of a given dynamical system.

2 Preliminaries

2.1 Invariant Measures

Definition 2.1. Letf be a measurable mapM → M . A measureµ is called invariant forf if

µ(f−1(E)) = µ(E) (2.1)

for every measurable setE.

An important class of measures are those that are Lebesgue-integrable
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Definition 2.2. A measureµ is called absolutely continuous (with respect to the Lebesgue measure) if

µ(dx) = h(x)dx with h ∈ L1 ; (2.2)

that is,
∫
h(x)dx < ∞.

With the help of the ergodic theorem (see next section), which says that time averages of observables
are equal to space averages, the invariant measures of a dynamical system can be empirically constructed
by density histograms.

Definition 2.3. LetA be a subset of the phase spaceΩ andf a measurable map. The average time the
“system state” spends inA over a time interval[0, N ] starting from the initial “state”x0 is

AN (x0, A) =
1

N

N−1∑

j=0

χA

(
f j(x0)

)
, (2.3)

whereχA denotes the characteristic function on the setA.

One is interested in the large-N limit of this quantity. Assuming that the limit exists, and denoting it
by µx0

(A) then it is easy to check that:

1. the limit also exists forf (x0) and for anyy ∈ f−1(x0) = {z|f (z) = x0}.

2. the limit also exists ifA is replaced byf−1(A) and has the same value, namely

µx0
(f−1(A)) = µx0

(A) ; (2.4)

this is indeed true sinceχA

(
f j(x)

)
= 1 if and only if x ∈ f−j(x0).

Remark 2.1. If one assumes thatµx0
(A) does not depend onx0 then, in the limit of large-N the his-

togramAN (x0, A) resembles an invariant measure.

Definition 2.4.
(2.5)

2.2 The ergodic theorem

In the previous section, the histogram (2.3) is a time average of the characteristic funcion of the bin
of measureA, which means that one counts how often the orbit visits a given intervalI. Thus, the
observable (h(x0)) inside the sum of (2.3 takes value1 if x ∈ I and0 otherwise.

➨ The ergodic theoremtells us that this procedure converges to the invariant measure for
almost every initial conditionx0.

Theorem 2.2. Birkhoff’s ergodic theoremLetµ be an invariant probability measure for the mapf (on
the spaceX). Leth be an integrable function onX:

∫

X dµ < ∞. Define the partial sums:

Sn(x) =
n−1∑

i=0

h(f i(x)) . (2.6)
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1. Forµ-almost everyx one has

lim
n→∞

1

n
Sn(x) = h∗(x) . (2.7)

2. The functionh∗ is f -invariant
h∗(x) = h∗(f (x)) . (2.8)

3. One has ∫

h∗(x)dµ =

∫

h(x)dµ . (2.9)

➨ The notion ofµ-almost everyx means for a set ofx of µ-measure1.

➨ The spaceX with measureµ is called aprobability spaceif
∫

X dµ = 1. In this caseµ is
called aprobability measure.

If the limit in the ergodic theorem is independent of the initial condition then the measureµ is
ergodic.1

Definition 2.5. Given a mapf on a spaceX, an invariant probability measureµ is called ergodic with
respect tof if f−1(E) = E impliesµ(E) = 1 or µ(E) = 0. In other words, the only invariant setsE
are those of measure0 or 1, and in particular, it is not possible that a part of the space is invariant.

The consequences of having an ergodic measureµ can be stated in the following

Lemma 2.3. Consider a dynamical system(f,X) with invariant measureµ.

i) If µ is ergodic, then for any integrable functionh the limit function given by the ergodic theorem
is almost surely constant, and furthermore

h(x) = lim
N→∞

1

N + 1

N∑

j=0

h(f j(x)) =
∫

h(y)dµ(y) . (2.10)

ii) If, for all integrableh, the functionh(x) is almost surely constant, thenµ is ergodic.

iii) If µ is ergodic, then any invariant function isµ-almost surely constant.

iv) If every invariant function is almost surely constant, thenµ is ergodic.

3 Lyapunov exponents

We discuss the concept of Lyapunov exponents for discrete time maps. Weconsider a differentiable map
f in Ω. For simplicity we will fixΩ = Rd, thed-dimensional Euclidean space.

Leth be a vector inΩ such that|h| ≪ 1, and consider two nearby trajectories with initial conditions
x andx+h. Our aim is to estimate the behaviour of the initial errorh in time. At timen, the magnitude
of the initial error is

|fn(x+ h) − fn(x)| , (3.1)
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wherefn(x) = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n times

(x). As long as the error does not grow too much, we can expect to have

a reasonable estimate of the error at timen from the first-order Taylor expansion

fn(x+ h) − fn(x) = Dxf
n
h+O(h2) , (3.2)

whereDxf
n denotes the differential of the mapfn at pointx. Applying the chain-rule one finds

Dxf
n = Dfn−1(x)f · Dfn−2(x)f · . . .Dxf . (3.3)

One has to be careful since in general, the matrices in this product do not commute. Let’s first take the
simple one-dimensional example. In this case the differentials (3.3) commute and

fn′(x) =
n−1∏

j=0

f ′
(
f j(x)

)
. (3.4)

We then look for the exponential growth rate, namely

1

n
log

∣
∣fn′(x)

∣
∣ =

1

n

n−1∑

j=0

log
∣
∣f ′

(
f j(x)

)∣
∣ . (3.5)

Finally, assuming thatlog |f ′| is for µ an ergodic invariant measure, we can use the ergodic theorem
(2.2) to conclude that on a set of fullµ-measure, the temporal average converges, and moreover

λ(x) ≡ lim
n→n

1

n
log

∣
∣fn′(x)

∣
∣ =

∫

log
∣
∣f ′

∣
∣ dµ . (3.6)

The limit λ is calle the Lyapunov exponent of the mapf for the measureµ at pointx.

➨ The Lyapunov exponentλ(x) measures the rate of separation of infinitesimally close initial
points arounbdx.

4 Existence of Lyapunov Exponents in higher dimensions

As mentioned before, the existence of the Lyapunov exponents in higher dimensions is far more difficult
since the differential (3.3) is in general a product of noncommutative terms. As in the one-dimensional
case, if for an ergodic invariant measureµ and a mapf the limit

lim
n→n

1

n
log ||Dxf

n| | (4.1)

existsµ-almost surely then, if this quantity is positive some initially small errors are exponentially am-
plified while if it is negative or zero then initial errors cannot grow very rapidly.

We note that in general, for a fixed vectorh

||Dxf
n
h| |2 = 〈h(Dxf

n)tDxf
n
h〉 , (4.2)

where〈·〉 denotes the scalar product inRd andAt is the transpose of the matrixA. The studied of the
exponential growth of the matrix in the r.h.s. of (4.2) led Oseledec to formulate the following
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Theorem 4.1. Oseledec’s theorem
Let µ be an ergodic invariant measure for a diffeomorphismf of a compact manifoldΩ. Then for

µ-almost every initial conditionx, the sequence of symmetric nonnegative matrices

(
(Dxf

n)tDxf
n
)1/2n

,

converges to a symmetric nonnegative matrixΛ (independent ofx). Denote byλ0 > λ1 > ... > λk the
strictly decreasing sequence of the logarithms of the eigenvalues of the matrix Λ (some of them may have
nontrivial multiplicity).

These numbers are called the Lyapunov exponents of the mapf for the ergodic invariant measureµ.
Moreover, forµ-almost every pointx there is a decreasing sequence of subspaces

Ω = E0(x) ( E1(x) ( · · · ( Ek(x) ( Ek+1(x) = {0} ,

satisfying (µ-almost surely)
DxfEj(x) = Ej(f (x))

and for anyj ∈ {0, . . . , k} and anyh ∈ Ej(x) Ej+1(x) one has

lim
n→n

1

n
log ||Dxf

n
h| | = λj

➨ Note that the theorem says that

||Dxf
n
h| | ∼ enλj .

There may be large or small (subexponential) prefactors which can depend onh andx.

t

Figure 2: Illustration of the streching and contracting directions.

➨ Positive Lyapunov exponents are obviously responsible for sensitivedependence on initial
conditions. Their corresponding “eigen” directions are tangent to the “attractor”.
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➨ Transversally to the attractor one gets contracting directions, namely negative Lyapunov
exponents.

➨ If the mapf is area-preserving

||Dxf
n| | = 1for all n , .

Therefore we have that
k∑

j=0

λj = 0 .

In words, “chaotic dynamics of Hamiltonian systems will strecht(contract) volumes along the
tangent(perpendicular) direction of the invariant measure set”.

➨ If the mapf is dissipative, meaning that

||Dxf
n| | < 1for all n ,

the Lyapunov exponents will satisfy

k∑

j=0

λj < 0 .

Note that this does not mean that all Lyapunov exponents are negative.

4.1 Iterative calculation of the largest Lyapunov exponents












