
Lecture 08: Hartman-Grobman theorem and normal forms

Introduction and notation

The expounded material can be found in

• Chapter 2 of [3]

• Chapter 2 of [7]

• Chapter 5 of [1]

As usual we suppose that

φ̇t = f ◦ φt (0.1)

is driven by a vector field sufficiently smooth to guarantee the existence of a flow Φ : R×D 7→ D (D stand here as
a generic symbol for the state space e.g. D = Rn) in terms of which we express the solution of (0.1) starting from x
at time t = 0:

φt = Φt ◦ x (0.2)

1 Topological conjugation

In the discussion of the rectification theorem we introduced the notion of conjugation by diffeomorphism of two
dynamical. A weaker notion is

Definition 1.1. We say that (0.1) is topologically conjugated to

ψ̇t = g(ψt) (1.1)

if there exists open sets U andW in Rn and an homeomorphism

h : U → W (1.2)

such that the flows expressing the fundamental solutions of, respectively, (0.1) and (1.1) satisfy

h ◦Φt(x) = Ψt ◦ h(x) (1.3)

for all x ∈ U and h(x) ∈ W .

An even weaker notion is that of topological equivalence which instead posits the existence of a map

f : R 7→ R (1.4)

such that

h ◦Φt(x) = Ψf(t) ◦ h(x) (1.5)

Equivalence reduces to conjugacy if

f(t) = t (1.6)
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2 Hartman-Grobman theorem

Theorem 2.1. Let x? be a fixed point of (0.1) which we suppose to be driven by a non-linear vector field f ∈
Cr(Rn;Rn) r ≥ 1. Let U be an open subset of Rn containing x?, and Φt be the flow of (0.1). Suppose that

A = (∂x ⊗ f)(x?) (2.1)

has no eigenvalue with zero real part. Then there exists a homeomorphism

h : U 7→ W (2.2)

whereW is an open set V containing x? such that for each x ∈ U , there is an open interval I containing zero such
that for all x ∈ U and t ∈ I

h ◦Φt(x) = Ψt ◦ h(x) (2.3)

where Ψt is the flow of

ψ̇t = A ·ψt (2.4)

Proof. We only present the idea of the proof in 3-steps. In order to neaten the notation we assume, as usual, that

x? = 0 (2.5)

and that

A = Au ⊕ As (2.6)

with Au ∈ End(Rn+), As ∈ End(Rn−). By the hyperbolicity hypothesis

n = n+ + n− (2.7)

(1 ) We write (0.1) as

φ̇u;t = Au · φu;t + gu(φu;t,φs;t) (2.8)

φ̇s;t = As · φs;t + gs(φu;t,φs;t) (2.9)

and (2.4) as

ψ̇u;t = Au ·ψu;t (2.10)

ψ̇s;t = As ·ψs;t (2.11)

From the corresponding flows we define the maps

F u(x) ≡ F u(xu,xs) =

{
Φu;t(xu,xs)− eAu · xu if ‖ x ‖≤ r

0 if ‖ x ‖> r
(2.12)

and similarly

F s(x) ≡ F s(xu,xs) =

{
Φs;t(xu,xs)− eAs · xs if ‖ x ‖≤ r

0 if ‖ x ‖> r
(2.13)
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Since for any x

∂x ⊗ Φ̇t(x) = A · (∂x ⊗Φt)(x) + (∂x ⊗ g)(Φt) · (∂x ⊗Φt)(x) (2.14)

it follows that for x = 0

d

dt
(∂x ⊗Φ)t(0) = A · (∂x ⊗Φt)(0) (2.15)

We have therefore for i = u, s

F i;t(0) = (∂x ⊗ F i)(0) (2.16)

Moreover for ‖ x ‖≤ r there is a K > 0 such that

‖ (∂x ⊗ F i)(x) ‖≤ K , ‖ x ‖≤ r & i = u , s (2.17)

By choosing r sufficiently small, K can be made as small as needed. Then applying the mean value theorem in
‖ x ‖≤ r, there must be a xo such that ‖ xo ‖≤‖ x ‖≤ r

F i(x) = F i(0) + (∂x ⊗ F i)(xo) · xo = (∂x ⊗ F i)(xo) · xo (2.18)

whence

‖ F i(x) ‖≤ K ‖ x ‖≤ K (‖ xu ‖ + ‖ xs ‖) i = u, s (2.19)

(2 ) Using the above bounds, it is possible to prove that there exists an homeomorphism h mapping a sufficiently
small open neighborhood of the origin U into anotherW such that

eA · h(x) = h ◦
[
eAu · xu + F u(x)
eAs · xs + F s(x)

]
(2.20)

or equivalently

hu(xu,xs) = e−Au · hu(eAu · xu + F u(x), eAs · xs + F s(x)) (2.21a)

hs(xu,xs) = e−As · hs(eAu · xu + F u(x), eAs · xs + F s(x)) (2.21b)

If we set

y = eA · x+ F (x) (2.22)

we can couch (2.21b) into the form

hs(e
−Au · yu + F̃ u(y), e−As · ys + F̃ s(y)) = e−As · hs(yu,ys) (2.23)

The advantage is that, there exists a 0 < K̃ < 1 such that

max{‖ eAs ‖ , ‖ e−Au ‖} < K̃ (2.24)

hence allowing us to prove the existence of the hi i = s, u

hu(xu,xs) = e−Au · hu(eAu · xu + F u(x), eAs · xs + F s(x)) (2.25a)
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hs(yu,ys) = eAs · hs(e−Au · yu + F u(y), e−As · ys + F s(y)) (2.25b)

by treating both sets of equations in (2.25) on the same footing. Namely we can prove that the sequences

h(n+1)
u (xu,xs) = e−Au · h(n)

u (eAu · xu + F u(x), eAs · xs + F s(x)) (2.26a)

h(n+1)
s (yu,ys) = eAs · hs((n)e−Au · yu + F u(y), e−As · ys + F s(y)) (2.26b)

with initial conditions

h(0)
u (xu,xs) = xu (2.27a)

h(0)
s (xu,xs) = xs (2.27b)

are Cauchy sequences with elements in the complete space of continuous functions of x. They are therefore
convergent. The fixed point of these sequences specify the unique solution of (2.21). See [7] for details.

(3 ) If an homeomorphism exists at t = 1, an homeomorphism exists at any other time. Namely let us define

H =

∫ 1

0
dt1 e

−A t1 · h ◦Φt1 (2.28)

Then

eA t ·H =

∫ 1

0
dt1 e

A (t−t1) · h ◦Φt1 =

∫ 1

0
dt1 e

A (t−t1) · h ◦Φt1−t ◦Φt (2.29)

If we show that ∫ 1

0
dt1 e

A (t−t1) · h ◦Φt1−t =

∫ 1

0
dt1 e

−A t1 · h ◦Φt1 (2.30)

we have proved the theorem. The proof follows by a direct calculation: the change of integration variable

u = t1 − t (2.31)

yields ∫ 1

0
dt1 e

A (t−t1) · h ◦Φt1−t =

∫ 1−t

−t
du e−Au · h ◦Φu

=

(∫ 0

−t
dt1 +

∫ 1−t

0
dt1

)
e−A t1 · h ◦Φt1 (2.32)

We now observe that ∫ 0

−t
dt1 e

−A t1 · h ◦Φt1 =

∫ 0

−t
dt1 e

−A t1 · (eA · h ◦Φ−1) ◦Φt1

=

∫ 0

−t
dt1 e

A (1−t1) · h ◦Φt1−1 =

∫ 1

1−t
dt1 e

−A t1 · h ◦Φt1 (2.33)

whence we arrived to

eA t ·H = H ◦Φt (2.34)
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3 Normal form theory

Normal form theory allows us to gain insight into the meaning and the practical use of the Hartman-Grobman theo-
rem. The idea is to construct explicitly the homeomorphism mapping a non-linear system into one governed by the
linearized part of the flow. We won’t use here the hyperbolicity assumption for the matrix A associated to the linear
flow. Concretely, given

φ̇t = A · φt + g(φt) (3.1)

with g(x) = O(‖ x ‖2) and

ψ̇t = A ·ψt (3.2)

respectively defined in neighborhoods U andW of the origin we look for

H : U 7→ W (3.3)

such that for every t for which solutions of (3.1) exist

φt = H(ψt) ≡ ψt + h(ψt) (3.4)

We have therefore

ψ̇t · ∂ψtH(ψt) =

(A ·ψt) · ∂ψtH(ψt) = A ·H(ψt) + g ◦H(ψt) (3.5)

Since the equality must hold independently of t

(A · x) · [I + ∂x ⊗ h(x)] = A · [x+ h(x)] + g(x+ h(x)) (3.6)

We finally arrive to

[1n x · AT · ∂x − A] · h(x) = g(x+ h(x)) (3.7)

3.1 The homological operator

It is expedient to introduce the differential operator

Hx = 1n x · AT · ∂x − A (3.8)

and refer to it as the “homological” operator. The name is due to its following property

Proposition 3.1. The homological operator (3.8) maps the space of differentiable homogeneous functions into itself

Proof. Let λ ∈ R+ and f a differentiable function such that

f(λx) = λm f(x) (3.9)

The dilation operator

Dx = x · ∂x (3.10)

acts on f as

Dxf(x) = mf(x) (3.11)

We have

[Dx ,Hx] := DxHx − HxDx = 0 (3.12)

which implies the claim.
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3.2 Geometrical interpretation of the homological operator

Geometrically the homological operator is the Lie derivative of the vector field h with respect to A · x.

Definition 3.1. Let f and g be a pair of smooth vector fields on a manifold Mn and let Φ : R ×Mn 7→ Mn be the
local flow generated by the field f . The Lie derivative of g with respect to f is defined to be the vector field

Lx[f ]g(x) = lim
dt↓0

g ◦Φdt(x)− [(Φdt)∗g](x)

dt
(3.13)

It is straightforward to see that the definition (3.13) implies

(Lx[f ]g)(x) · ∂x = [fx , gx] (3.14)

where

fx = f(x) · ∂x gx = g(x) · ∂x (3.15)

In order to see this recall that

[(Φt)∗g](x) = [(∂x ⊗Φt) · g] ◦Φ−t(x) (3.16)

We have then

g ◦Φdt(x) = g(x) + dt (f · ∂xg)(x) +O(dt2) (3.17)

and

[(∂x ⊗Φt) · g] ◦Φ−t(x) = g(x) + dt [(∂x ⊗ f) · g](x) +O(dt2) (3.18)

The interpretation of the Lie derivative is that of “a Taylor expansion” of g along the orbit of Φ through x. If we now
replace in (3.14)

f(x) = A · x (3.19)

and

g(x) = h(x) (3.20)

we find [
x · AT · ∂x ,h(x) · ∂x

]
= x · AT · ∂xh(x) · ∂x − h(x) · ∂x x · AT · ∂x

= [x · AT · (∂x ⊗ h)(x)T − A · h(x)] · ∂x = (Hxh)(x) · ∂x (3.21)

whence we arrive at

Lx[A · x]h(x) = Hxh(x) (3.22)
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3.3 Notation conventions for vector valued homogeneous polynomials

We denote the space of Rm-valued polynomials of n variables

P : Rn 7→ Rm (3.23)

homogeneous of degree k

P (λx) = λk P (x) ∀λ ∈ R+ (3.24)

asHk(Rn;Rm). For any x ∈ Rn, we can write a generic element ofHk(Rn;Rm) as

P (x) =

m∑
i=1

eiP
(i) :

n times︷ ︸︸ ︷
x⊗ · · · ⊗ x (3.25)

where {ei}mi=1 is the canonical basis of Rm and
{
P(i)
}m
i=1

is a collection of m coefficients with n indices such that

(P(i) :

n times︷ ︸︸ ︷
x⊗ · · · ⊗ x) ≡

 m∑
j1,...,jn=1

P
(i)
j1,...,jn

xj1xj2 . . . xjn

 : Rn 7→ R ∀ i = 1, . . . ,m (3.26)

Example 3.1. Let

x =

[
x1
x2

]
e1 =

[
1
0

]
e2 =

[
0
1

]
(3.27)

and

P (x) =

[
p
(1)
11 x

2
1 + p

(1)
12 x1x2 + p

(1)
22 x

2
2

p
(2)
11 x

2
1 + p

(2)
12 x1x2 + p

(2)
22 x

2
2

]
=

2∑
i=1

ei

(
p
(i)
11x

2
1 + p

(i)
12x1x2 + p

(i)
22x

2
2

)
then

P(i) =
1

2

2 p
(i)
11 p

(i)
12

p
(i)
12 2 p

(i)
22

 ⇒ P
(i)
11 = p

(i)
11 & P

(i)
12 = P

(i)
21 =

1

2
p
(i)
12 & P

(i)
22 = p

(i)
22 (3.28)

More gererally we can think of each of the P(i)’s i = 1, . . . ,m as a collection of symmetric tensors of rank n
where n is the homogeneity degree of P .

3.4 Solution of the homological equation

We can look for the solution of (3.7) by expanding the vector field h in Taylor series. Since the homological operator
preserves the homogeneity degree of the functions on which it acts, it does not mix terms of different orders in the
Taylor expansion. As a consequence, order by order (3.7) reduces to an algebraic equation for the coefficients of the
expansion. Thus if the vector field g admits the expansion

g(x) =
∞∑
m=2

gm(x) (3.29)

with

gm(x) =

n∑
i=1

ei
1

m!
G(i) :

m times︷ ︸︸ ︷
x⊗ · · · ⊗ x (3.30)
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for {ei}ni=1 the canonical basis of Rn and
{
G(i)
}m
i=1

the collection of m multi-index coefficients specifying the
O(‖ x ‖m) term of the Taylor expansion of g:

G(i) := (

m times︷ ︸︸ ︷
∂x ⊗ · · · ⊗ ∂x ei · g)(0) (3.31)

Then we can similarly write

h(x) =
∞∑
m=2

hm(x) (3.32)

with

hm(x) =
n∑
i=1

ei
m!

H(i) :

m times︷ ︸︸ ︷
x⊗ · · · ⊗ x (3.33)

We note that

• The evaluation of gj at x+ hm generates corrections to gj(x) of order of the order O(‖ x ‖m+j−1):

gj(x+ hm(x)) =

n∑
i=1

ei
j!
G(i) :

j times︷ ︸︸ ︷
x+ hm(x)⊗ · · · ⊗ x+ hm(x)

= gj(x) +
n∑
i=1

ei
(j − 1)!

G(i) :

j times︷ ︸︸ ︷
hm(x)⊗ · · · ⊗ x+O(‖ x ‖2m+j−2) (3.34)

• For ‖ x ‖↓ 0 it follows that O(‖ x ‖m+j−1) � O(‖ x ‖m) since by hypothesis j ≥ 2.

Example 3.2. Let us consider the second order case:

g2(x) =
1

2

n∑
i=1

ei G
(i)
2 : x⊗ x (3.35)

Correspondingly we make the Ansatz

h2(x) =
1

2

n∑
i=1

eiH
(i)
2 : x⊗ x (3.36)

which yields

Hxh2(x)

=
n∑
i=1

[
ei x ·

(
ATH

(i)
2 + H

(i)T
2

2

)
· x− A · ei

1

2
H
(i)
2 : x⊗ x

]

=
1

2

n∑
i=1

[
ei

(
ATH

(i)
2 + H

(i)
2 A
)
− A · eiH(i)

2

]
: x⊗ x (3.37)

We arrive therefore to the equations for the set of symmetric matrices
{
H(k)

}n
k=1

:

ATH
(k)
2 + H

(k)
2 A−

n∑
i=1

(ek · A · ei)H
(i)
2 = Gk2 (3.38)
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In order to simplify the discussion, let us now suppose that A is diagonal in the canonical basis. Equation (3.38)
reduces to

AH
(k)
2 + H

(k)
2 A− ak H

(k)
2 = Gk2 (3.39)

In order to solve the matricial equation we can introduce the canonical basis {eij}di,j=1 of Rd×d whose elements
satisfy the relations

eTij = eji & eij elk = δjleik (3.40)

and

treTijelk = δil trejk = δilδjk (3.41)

In the canonical basis we can write a symetric matrix as

H
(k)
2 =

d∑
i=1

h
(k)
i eii +

d∑
j>i=1

h
(k)
ij

eij + eji
2

(3.42)

whence

AH
(k)
2 =

d∑
l=1

alell

 d∑
i=1

h
(k)
i eii +

d∑
j>i=1

h
(k)
ij

eij + eji
2


=

d∑
i=1

aih
(k)
i eii +

d∑
j>i,l=1

al h
(k)
ij

δilelj + δjleli
2

=
d∑
i=1

aih
(k)
i eii +

d∑
j>i=1

h
(k)
ij

aieij + ajeji
2

(3.43)

and similarly

H
(k)
2 A =

 d∑
i=1

h
(k)
i eii +

d∑
j>i=1

h
(k)
ij

eij + eji
2

 d∑
l=1

alell

=

d∑
i=1

aih
(k)
i eii +

d∑
j>i,l=1

al h
(k)
ij

δjleil + δilejl
2

=

d∑
i=1

aih
(k)
i eii +

d∑
j>i=1

h
(k)
ij

ajeij + aieji
2

(3.44)

In view of the above we obtain the equation

d∑
i=1

(2 ai − ak)h
(k)
i eii +

d∑
j>i=1

(ai + aj − ak)h
(k)
ij

eij + eji
2

=
d∑
i=1

g
(k)
i eii +

d∑
j>i=1

g
(k)
ij

eij + eji
2

(3.45)

For any fixed k non-resonance conditions are therefore

2 ai − ak 6= 0 ∀ i = 1, . . . , d (3.46)

and

ai + aj − ak 6= 0 ∀ j > i = 1, . . . , d (3.47)
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From the complete analysis of the space of vector fields of homogeneity degree two we infer that eigenvectors of
the homological operator in the space of vector homogeneous polynomials of degree M take in the basis where A is
diagonal the general form

vM ,i =
d∑
i=1

ei

d∏
j=1

x
mj
j

d∑
j=1

mi = M (3.48)

whereM = (m1, . . . ,md) Namely in such a basis the homological operator takes the form

H =
d∑

k=1

(akxk∂xk 1− akek ⊗ ek) (3.49)

so that

HvM ,i = Λ(M , i)vM ,i (3.50)

with

Λ(M , i) =
∑
k

(mk ak − ai) (3.51)

3.5 Fisher-Fock-Bargmann inner product for homogeneous polynomials

In order to analyze systematically the order by order in Taylor series solution of the homological equation it is expe-
dient to introduce a scalar product overHk(Rn;Rn). The Fisher-Fock-Bargmann inner product is well adapted to our
scopes.

Definition 3.2. Let Pi ∈ Hmi(Rn;R), i = 1, 2 for m1,m2 ∈ N:

Pi(x) = Pi :

mi times︷ ︸︸ ︷
x⊗ · · · ⊗ x ∀ i = 1, 2 (3.52)

The Fisher-Fock-Bargmann inner product overH(Rn;Rn) :=
⊕∞

k=0Hk(Rn;Rn) is defined as

〈P1 , P2〉H(Rn;R) = P1(∂x)P2(x)|x=0 (3.53)

Note that P (∂x) means: replace any monomial in P (x) with a partial derivative operation of order equal to that
of the monomial:

P (x) = x31 + x2x
2
3 ⇒ P (x) = ∂3x1 + ∂x2 ∂

2
x3 (3.54)

An immediate consequence of the definition is that P1, P2 are orthogonal if they have different homogeneity degree.
Namely

• if m1 > m2

P1(∂x)P2(x) = 0 (3.55)

because all the monomials in P2(x) are annihilated;

• if m1 < m2

P1(∂x)P2(x)|x=0 ∈ Hm2−m1(Rn;R) (3.56)

The definition of the Fisher-Fock-Bargmann inner product requires, however, to evaluate this polynomial in the
origin where it equals zero.
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In appendix A we show that the definition (3.2) is indeed isomorphic to a scalar product in L2(Rn). Taking for granted
that (3.2) is indeed a well defined scalar product, it is straightforward to define a scalar product over H(Rn;Rn) :=⊕∞

k=0Hk(Rn;Rn). Namely we observe that a generic element ofHm(Rn;Rn) can be written as

P (x) =
n∑
i=1

ei P
(i)(x) (3.57)

for
{
P (i)(x)

}n
i=1

a collection of elements ofHm(Rn;R). Then we define the inner product

〈Pm1 ,Pm2〉H(Rn;Rn) =
n∑

i,j=1

ei · ej [P
(i)
m1:1

(∂x)P
(j)
m2:2

](0) = δm1m2

n∑
i=1

P (i)
m2

(∂x)P (i)
m2

(x) (3.58)

Again, polynomials of different homogeneity degree are orthogonal. Non-trivial orthogonality conditions emerge
therefore only if we fix the homogeneity degree. Once we equipped Hm(Rn;Rn) with the inner product (3.58), we
can construct an orthonormal basis {Em;i}N(n,m)

i=1 with

N(n,m) = n
(n− 1 +m)

(n− 1)!m!
(3.59)

of Hm(Rn;Rn) with respect to (3.58). We can then compute the matrix elements of the homological operator over
Hm(Rn;Rn):

H
(m)
ij = 〈Pm:i ,HPm:j〉Hk(Rn;Rn) (3.60)

We have therefore [4, 5]

Proposition 3.2. The Bargmann scalar product (3.58) induces the following decomposition of the space Hn of Rn-
valued homogeneous polynomials of degree n:

Hm = Im(HH)m ⊕Ker(H†H)m ∼ ImH(m) ⊕KerH(m)† (3.61)

where

Ker
{
H†Hm (Rn)

}
=
{
Pm ∈ Hm | e−A

†tPm(eA
†t · x) = Pm(x) ∀ t ∈ R ∀x ∈ Rn

}
(3.62)

Proof. We proceed in two steps

1. We use the fact that the homological operator is the Lie derivative of the vector field on which it acts with
respect to the linear vector field A · x. By definition then for any Pm ∈ Hm (Rn)

HPm(x) =
d

dt

∣∣∣∣
t=0

e−A tPm(eA t · x) = −A · P (x) +

(
d

dt
eA t
∣∣∣∣
t=0

· x
)
· ∂xP (x) (3.63)

Thus we can write

〈Pm:a ,HPm:b〉Hk(Rn;Rn) =
d

dt

∣∣∣∣
t=0

〈Pm:a , e
−A t · Pm:b ◦ eA t〉Hk(Rn;Rn)

=
d

dt

∣∣∣∣
t=0

n∑
i,j=1

ei · e−A t · ej〈P (i)
m:a , P

(j)
m:b ◦ e

A t〉Hk(Rn;Rn)

=
d

dt

∣∣∣∣
t=0

n∑
i,j=1

(
e−A

† t · ei
)
· ej〈P (i)

m:a , P
(j)
m:b ◦ e

A t〉Hk(Rn;Rn) (3.64)
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2. We now observe that for any differentiable vector field f and any matrix B the chain of identities

∂x ⊗ f(B · x) = ∂x ⊗ (B · x) · ∂y ⊗ f(y)|y=B·x = B† · (∂x ⊗ f)(B · x) (3.65)

Hence we we have

〈Pm:a ,HPm:b〉Hk(Rn;Rn)

=
d

dt

∣∣∣∣
t=0

n∑
i,j=1

(
e−A

† t · ei
)
· ej〈P (i)

m:a ◦ eA
† t , P

(j)
m:b〉Hk(Rn;Rn)

=
d

dt

∣∣∣∣
t=0

〈 e−A† t · P (i)
m:a ◦ eA

† t ,P
(j)
m:b〉Hk(Rn;Rn) ≡ 〈H

†Pm:a ,Pm:b〉Hk(Rn;Rn) (3.66)

where now

H† = x · A · ∂x − A† (3.67)

3. We have proved that

〈Pm:a ,HPm:b〉Hk(Rn;Rn) = 〈H†Pm:a ,Pm:b〉Hk(Rn;Rn) (3.68)

hence the left hand side vanishes if the right hand side does. Consider now the problem onHk(Rn;Rn):

Hhk = gk (3.69)

Clearly it admits a unique solution if, given a complete orthonormal basis {Ei}N(n,r)
i=1 ofHr(Rn;Rn)

〈Ei ,Hhr〉Hr(Rn;Rn) = 〈H†Ei ,hk〉Hr(Rn;Rn) = 〈Ei , gr〉Hr(Rn;Rn) (3.70)

we have

H†Ei 6= 0 ∀ i such that 〈Ei , gr〉Hr(Rn;Rn) 6= 0 (3.71)

As a consequences we discriminate between elements of {Ei}N(n,r)
i=1 annihilated by H† whose span is (3.71)

and those which are not and whose span is ImHHr(Rn;Rn).

We are in the position to prove

Proposition 3.3. For any r ∈ N there exists, in a neighborhood of the origin, a polynomial change of variables
induced by the formal diffeomorphism

x = y + h(y) = y +

r∑
k=2

h(y) +O(‖ y ‖r+1) (3.72)

with hk ∈ Hk(Rn;Rn) mapping (3.1) into

ψ̇t = A ·ψt +
r∑

k=2

g
(res)
k (ψt) +O(‖ ψt ‖r+1) (3.73)

where

g
(res)
k (x) ∈ KerHHm ∀ k | 2 ≤ k ≤ r (3.74)
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Proof. The proof proceeds by induction.

• Suppose first that we have found a change of variables mapping (3.1) into

ψ̇t = A ·ψt +

r−1∑
k=2

g
(res)
k (ψt) + gr(ψt) +O(‖ ψt ‖r+1) (3.75)

• Observe that a change of variables of the form

x = y + hr(y) (3.76)

yields

A · [y + hr(y)] +
r−1∑
k=2

g
(res)
k (y + hr(y))

= A · y +
r−1∑
k=2

g
(res)
k (y) + A · hr(y) +

r−1∑
k=2

O(‖ x ‖m+k−1) (3.77)

In words: resonant terms identified by solving the homological equation up to order r − 1 in Taylor expansion
are not affected by a change of variables of the form (3.76).

• Decompose gr into a non-resonant and a resonant part:

gr(x) = gnot resr (x) + gresr (x) (3.78)

In particular, if we can couch the decomposition into the form

gnot resr (x) =

N1∑
i=1

c
(not res)
i Ei (3.79a)

gresr (x) =

N(n,r)∑
i=N1+1

c
(res)
i Ei (3.79b)

where

H†Ei = 0 N1 ≤ i ≤ N(n, r) (3.80)

• The problem

Hhr(x) = gnot resr (x) (3.81)

admits a unique solution which we can use to couch (3.1) into the form (3.75) as claimed.
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3.6 Spectral properties of the homological operator.

The problem of determining the existence of a resonance over Hk(Rn;Rn) reduces to that of assessing the spectral
properties of the homological operator of (3.1) overHk(Rn;Rn). To simplify the discussion let us suppose that A has
vanishing nilpotent component, then it is straightforward to determine the spectrum of H

Proposition 3.4. If A in (3.1) is diagonalizable and let {ai}Mi=1 the collection of distinct eigenvalues in SpA. Then a
resonance occurs overHk(Rn;Rn) if

ak =

M∑
i=1

mi ai (3.82)

for some

[m1, . . . ,mM ] ∈ NM (3.83)

Proof. By definition M ≤ n where the inequality is strict if some eigenvalues have algebraic multiplicity larger than
one. Let us suppose this is not the case, the generalization of the proof to the degenerate case being straigthforward.
Then M = n so that to each linear independent eigen-vector corresponds a different eigenvalue of A:

A · rl = al rl l = 1, . . . , n (3.84)

Let us suppose to work in the frame of reference where A is diagonal. Let us define for
∑n

i=1mi = k

EI =
n∏
i=1

xmii rl ∈ Hk(R
n;Rn) (3.85)

The n+ 1-tuple

I = [m1, . . . ,mn, l] (3.86)

completely specifies the functional form of EI . Then, in

HEI =

(
1

n∑
i=1

xiai∂xi − A

)
EI =

(
n∑
i=1

mi ai − ak

)
EI (3.87)

It follows immediately that H has a non-vanishing kernel overHk(Rn;Rn) if

n∑
i=1

mi ai − ak = 0 (3.88)

4 Poincaré-Sternberg-Chen theorem and its meaning

Theorem 4.1. Consider the two equations in Rn

φ̇t = A · φt + g(1)(φt) (4.1a)

ψ̇t = A ·ψt + g(2)(ψt) (4.1b)
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with A hyperbolic, and g(i)(x) = O
(
‖ x ‖2

)
∈ Cr(Rn;Rn), i = 1, 2 in a neighborhood of the origin such that

g(1)(x)− g(2)(x) = O(‖ x ‖r) (4.2)

Then for every k ≥ 2, there exists an integer N ≥ k such that if

r ≥ N (4.3)

there exists a map h ∈ Ck(Rn;Rn) turning (4.1a), (4.1b) into one another.

In order to interpret the result suppose

g(2)(x) = 0 (4.4)

Then the theorem states that we can turn a non-linear system into its linearization around an hyperbolic fixed point by
means of a k-times differentiable map if we can show that no resonant term occurs up to a certain integer N

N = N(A, n, k) (4.5)

i.e. depending upon the detailed form of the linearized dynamics, the number of spatial dimensions n and the smooth-
ness we require for the transformation h.

A Scalar product and completeness relations

We can gain some intuition about the Fisher-Fock-Bargmann scalar product between homogeneous polynomials by
relating it to a standard L2(Rn) scalar product.

A.1 Hermite polynomials

References on multi-dimensional Hermite polynomials are [6, 8]. See also [2]. Let αk = [α1 , . . . , αn] ∈ Nn such
that

n∑
i=1

αi = k (A.1)

To any α we can uniquely associate an Hermite polynomial Hαk(x) : Rn 7→ R as polynomial eigenvectors of the
differential operator

Gσ := −x · ∂
∂x

+ σ2 ∆x σ ∈ R+ (A.2)

i.e.

(GσHαk
σ )(x) = −kHα1

σ (x) (A.3)

We will refer to the integer k specified by (A.1) as the order of the Hermite polynomial. In particular, we find that
Hermite polynomials are specified by Rodrigues formula

Hαk
σ (x) =

(−σ)k

χσ(x)

n∏
i=1

∂αi

∂xαi
χσ(x) (A.4)
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where

χσ(x) =
e−
‖x‖2

2σ2

(2π σ2)d/2
(A.5)

Rodrigues formula implies the L2(Rn)-orthogonality of Hermite polynomials with respect to the Gaussian measure

〈Hαk1
σ , H

αk2
σ 〉L2

χσ (Rn)
=

∫
Rd

dnxχσ(x)H
αk1
σ (x)H

αk2
σ (x) =

n∏
i=1

αi;1! δαi;1,αi;2 (A.6)

Namely we have

〈Hαk1
σ , H

αk2
σ 〉L2

χσ (Rn)
=

(−σ)k1
∫
Rd

dnx
n∏
i=1

[
∂αi;1

∂xαi;1
χσ(x)

]
H
αk2
σ (x) = σk1

∫
Rd

dnxχσ(x)

n∏
i=1

∂αi;1

∂xαi;1
H
αk2
σ (x) (A.7)

If we integrate by parts we see immediately that

• If k1 > k2 there are more derivatives than monomials in H
αk2
σ (x) thus the integral must vanish.

• If k1 < k2 since the scalar product is symmetric in the Hermite polynomials, the integral must vanish for the
same reason as before exchanging after the roles of H

αk1
σ (x) and H

αk2
σ (x).

• For k1 = k2 the integral does not vanish only if the derivatives exactly match the highest order monomial
contained in H

αk2
σ (x).

A further important consequence of Rodrigues formula (A.4) and the scalar product (A.6) is the grading relation

∂xiH
αk
σ (x) = −αi

σ
Hαk−ei
σ (x) (A.8)

where we used the notation

αk − ei = [α1 , . . . , αi , . . . , αn]− [0 , , . . . , 1 , . . . , αn] = [α1 , . . . , αi − 1 , . . . , αn] (A.9)

A.2 Relation with homogeneous polynomials

Any polynomial of degree k and in particular Hermite polynomials can be written as a linear combination of homo-
geneous polynomials up to degree k. On the other hand any polynomial P of degree k can be written as a linear
combination of Hermite polynomials. The coefficients of the linear combination can be obtained by computing

cαki = 〈Hαki
σ , Pk〉L2

χσ
(Rn) (A.10)

for all α with ki ≤ k. We can exploit this fact to define an L2
χσ(Rn) scalar product over homogeneous polynomials.

This is done based on the following construction

1. Given two Hermite polynomials of same order k, the value of their scalar product is uniquely determined by
the monomials of order k entering their expression.

2. Let Pαk the homogeneous polynomial of degree k

Pαk =

n∏
i=1

xαii (A.11)

It is always possible to write it as the linear combination

Pαk = Hαk + linear combination of Hermite polynomials of order l ≤ k (A.12)
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3. We observe that ∫
Rd

dxχσ(x) = 1 (A.13)

From the above two observations we have the the chain of identities

〈P1 , P2〉H(Rn;R) := [P1(∂x)P2](0) = σk〈Hα1;k
σ , H

α2;k
σ 〉L2

χσ
(Rn) (A.14)

Since the right most quantity is a well defined scalar product so it must be the leftmost one.

A.3 Application: the adjoint of the homological operator

Let us show that we can derive the expression of the adjoint homological operator using (A.6). To that goal is is
sufficient to compute

〈Hα1;k ,DAH
α2;k〉L2

χ(Rn) :=

∫
Rd

dnxχ(x)Hαk;1(x)x · A† · ∂xHαk;2(x) (A.15)

having set

σ = 1 (A.16)

and omitted the under-script. Let us introduce the shorthand notation

Dαk =

n∏
i=1

∂αi;1

∂xαi;1
(A.17)

then we have

〈Hα1;k ,DAH
α2;k〉L2

χ(Rn)

=

∫
Rd

dnx

[
χ(x) ∂xi

1

χ(x)

]
Dαk;1 [χ(x)]A†ij∂xj

[
1

χ(x)
Dαk;2χ(x)

]
=

∫
Rd

dnx

{[
χ(x) ∂xi

1

χ(x)
Dαk;1 −Dαk;1+ei

]
χ(x)

}
A†ij∂xj

[
1

χ(x)
Dαk;2χ(x)

]
(A.18)

It is expedient to analyze separately the contributions to the right hand side.∫
Rd

dnx χ(x) ∂xi

{
1

χ(x)
Dαk;1χ(x)

}
A†ij∂xj

[
1

χ(x)
Dαk;2χ(x)

]
=

∫
Rd

dnx χ(x) ∂xiH
αk;1A†ij

1

χ(x)

[
xj Dαk;2 + Dαk;2+ej

]
χ(x)

=

∫
Rd

dnx χ(x) [∂xiH
αk;1 ]A†ij xjH

αk;2 +

∫
Rd

dnx χ(x) [∂xiH
αk;1 ]A†ijH

αk;2+ej (A.19)

Taking into account the grading property (A.8) we see that the second integral vanishes. The second contribution is∫
Rd

dnx
{

Dαk;1+eiχ(x)
}
A†ij∂xj

[
1

χ(x)
Dαk;2χ(x)

]
=

−
∫

dnx
{

Dαk;1+ei+ejχ(x)
}
A†ij

[
1

χ(x)
Dαk;2χ(x)

]
= −A†ij〈H

αk;1+ei+ej , Hαk;2〉L2
χ(Rn) = 0 (A.20)

since is the scalar product of Hermite polynomials of different order. We have therefore proved

〈Hα1;k ,DAH
α2;k〉L2

χ(Rn) =

∫
Rd

dnxχ(x)Hαk;2(x)x · A · ∂xHαk;1(x) := 〈D†AH
α1;k , Hα2;k〉L2

χ(Rn) (A.21)

Using this identity it is straightforward to recover the expression of the adjoint of the homological operator given in
the main text.
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