
Lecture 07: Invariant manifold theorem

Introduction and notation

The expounded material can be found in

• Chapter 2 of [1]

• Chapter 3 of [3]

As usual we suppose that

φ̇t = f ◦ φt (0.1)

is driven by a vector field sufficiently smooth to guarantee the existence of a flow Φ : R×D 7→ D (D stand here as
a generic symbol for the state space e.g. D = Rn) in terms of which we express the solution of (0.1) starting from x
at time t = 0:

φt = Φt ◦ x (0.2)

Remark 0.1. Since we are dealing with time autonomous systems by a time translation we can always assign the
initial condition at time t = 0 and identify t as the time elapsed from the moment when the state of the system is
given.

1 Local stable and unstable manifold theorem for hyperbolic fixed points

Theorem 1.1. Let x? be a singular hyperbolic point of f ∈ Cr(Rn;Rn) for r ≥ 2, in a neighborhood of x?. We
suppose that

A = (∂x ⊗ f)(x?) ∈ End(Rn) (1.1)

admits

1. n+ eigenvalues with strictly positive real part associated to the invariant subspace E+;

2. n− eigenvalues with strictly negative real part associated to the invariant subspace E−

so that

n+ + n− = n (1.2)

Then, in a neighborhood U of x? there exist

• a unique local invariant unstable manifold W u
loc.(x?) of class Cr of dimension n+

1. tangent in x? to E+,
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2. admitting for a suitable coordinate choice the graph representation

W u
loc(x?) ={
xu ⊕ xs ∈ Rn+ × Rn− |

{
xs = h

(s|u)(xu)

(∂xu ⊗ h(s|u))(x?) = 0
& ‖ xu ‖= small enough

}
(1.3)

• a unique local invariant stable manifold W s
loc.(x?) with dimension n−

1. tangent in x? to E+,

2. admitting for a suitable coordinate choice the graph representation

W s
loc(x?) ={
xu ⊕ xs ∈ Rn+ × Rn− |

{
xu = h(u|s)(xs)

(∂xs ⊗ h(u|s))(x?) = 0
& ‖ xs ‖= small enough

}
(1.4)

Proof. By hypothesis we can always find a similarity transformation such that

T−1AT =

[
Au 0
0 As

]
(1.5)

Correspondingly initial data of (0.1) can be written as

xu ⊕ xs = T · x (1.6)

and

TΦ ◦ x = TΦ ◦ (T−1 · xu ⊕ xs) = Ψt ◦ (xu ⊕ xs) = ψu;t ⊕ψs;t (1.7)

such that

ψ̇u;t = Au ·ψu;t + gu(ψu;t,ψs;t)
ψ̇s;t = As ·ψs;t + gs(ψu;t,ψs;t) (1.8)

Note that

gu ⊕ gs := g = T−1 · f ◦ T− T−1 · AT = O(‖ x ‖2) (1.9)

In particular for any ε > 0 we can find a δ such that

‖ g(x1)− g(x2) ‖≤ ε ‖ x1 − x2 ‖ (1.10)

The integral expression of this coupled system of equation is

ψu;t = eAu t · xu +
∫ t

0
dt1 e

Au (t−t1) · gu(ψu;t1 ,ψs;t1) (1.11a)

ψs;t = eAs t · xs +
∫ t

0
dt1 e

As (t−t1) · gs(ψu;t1 ,ψs;t1) (1.11b)

where by hypothesis for some K1 ,K2 ,K3 > 0 and any v ∈ Rn−

‖ eAst · v ‖Rn−≤ K1 e
−K2 t ‖ v ‖Rn− (1.12)
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and any v ∈ Rn+

‖ eAst · v ‖Rn+≤ K1 e
K3 t ‖ v ‖Rn+ (1.13)

Let us postulate the existence of a map h relating the initial data of a particular solution of (1.11)

xu = h ◦ xs (1.14)

so that only n− of them are linearly independent around the origin. Then we write

ψh
u;t = eAu t ·

[
h(xs) +

∫ t

0
dt1 e

−Au t1 · gu(ψh
u;t,ψ

h
s;t)

]
(1.15a)

ψh
s;t = eAs t · xs +

∫ t

0
dt1 e

As (t−t1) · gs(ψh
u;t,ψ

h
s;t) (1.15b)

to emphasize the dependence on the particular choice of initial data. Suppose now that the function h solves the
integral equation

h(xs) = −
∫ ∞
0

dt1 e
−Au t1 · gu(ψh

u;t,ψ
h
s;t) (1.16)

then (1.15) can be couched into the form

ψh
u;t = −

∫ ∞
t

dt1 e
Au (t−t1) · gu(ψh

u;t,ψ
h
s;t) (1.17a)

ψh
s;t = eAs t · xs +

∫ t

0
dt1 e

As (t−t1) · gs(ψh
u;t,ψ

h
s;t) (1.17b)

If we introduce the kernels

Ku;t = eAu t ⊕ 0 & Ks;t = 0⊕ eAs t (1.18)

we can couch (1.17) into the compact form

Ψt(h ◦ xs,xs) = Ks;t · x+

∫ t

0
dt1 Ks;t−t1 · g ◦Ψt1(h ◦ xs,xs)−

∫ ∞
t

dt1 Ks;t−t1 · g ◦Ψt1(h ◦ xs,xs) (1.19)

This equation can now be solved by successive approximations. In other words, given the recursion

Ψ
(n+1)
t (h ◦ xs,xs) = Ks;t · x+∫ t

0
dt1 Ks;t−t1 · g ◦Ψ

(n)
t1

(h ◦ xs,xs)−
∫ ∞
t

dt1 Ks;t−t1 · g ◦Ψ
(n)
t1

(h ◦ xs,xs) (1.20a)

Ψ
(0)
t (h ◦ xs,xs) = 0 (1.20b)

we can show that it converges to a unique fixed point as n tends to infinity. The existence of such fixed point is
equivalent to the existence of a unique solution of (1.19). To prove the claim let us proceed by induction. Let us
hence suppose that for some positive K̃i > 0, i = 1, 2

‖ Ψ
(n)
t (h ◦ xs,xs)−Ψ

(n−1)
t (h ◦ xs,xs) ‖≤ K̃1

e−K̃2 t ‖ xs ‖Rn−

2n−1
(1.21)
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then

‖ Ψ
(n+1)
t (h ◦ xs,xs)−Ψ

(n)
t (h ◦ xs,xs) ‖

≤ εK1

∫ t

0
dt1 e

−K2(t−t1) ‖ Ψ
(n)
t1
−Ψ

(n−1)
t1

‖ (h ◦ xs,xs)

−εK1

∫ ∞
t

dt1 e
K3(t−t1) ‖ Ψ

(n)
t1
−Ψ

(n−1)
t1

‖ (h ◦ xs,xs) (1.22)

We obtain

‖ Ψ
(n+1)
t (h ◦ xs,xs)−Ψ

(n)
t (h ◦ xs,xs) ‖

≤ εK1 K̃1
‖ xs ‖Rn−

2n−1

[
e−K2 t e

(K2−K̃2) t − 1

K2 − K̃2

+ eK3 t e
−(K3+K̃2) t

K3 + K̃2

]

≤ εK1 K̃1
e−K̃2 t ‖ xs ‖Rn−

2n−1

[
1− e−(K2−K̃2) t

K2 − K̃2

+
1

K3 + K̃2

]
(1.23)

For suitable choices of ε and K̃2 we arrive to

‖ Ψ
(n+1)
t (h ◦ xs,xs)−Ψ

(n)
t (h ◦ xs,xs) ‖≤ K̃1

e−K̃2 t ‖ xs ‖Rn−

2n
(1.24)

Since
∞∑
n=0

‖ Ψ
(n+1)
t (h ◦ xs,xs)−Ψ

(n)
t (h ◦ xs,xs) ‖≤

∞∑
n=0

K̃1
e−K̃2 t ‖ xs ‖Rn−

2n
< ∞ (1.25)

it follows that

lim
n↑∞
‖ Ψ

(n+1)
t (h ◦ xs,xs)−Ψ

(n)
t (h ◦ xs,xs) ‖= 0 (1.26)

which proves that
{

Ψ
(n+1)
t (h ◦ xs,xs)

}∞
n=0

is a Cauchy sequence of continuous functions. The space of contin-
uous functions on a closed interval with supremum norm is complete. This means that every Cauchy sequence is
convergent. Hence it is possible to prove that

lim
n↑∞

Ψ
(n+1)
t (h ◦ xs,xs) = Ψt(h ◦ xs,xs) (1.27)

uniformly with Ψt(h◦xs,xs) differentiable and bounded by a decreasing exponential in t. As a consequence we can
also prove that (1.16) is well posed and admits a unique solution specifying the local stable manifold. The existence
of the local unstable manifold is obtained similarly by a time reversal operation t 7→ −t (see e.g. [2] for more
details).

1.1 Example

Let us consider the system

φ̇1;t = −φ1;t + φ22;t

φ̇2;t = φ2;t + φ21;t

(1.28)
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We can determine the local stable manifold of the fixed point in the origin (plotted in blue in the figure above) in
two ways.

1.1.1 Iteration method

We define the iteration map[
φ
(n+1)
1;t

φ
(n+1)
2;t

]
=

[
e−t x1

0

]
+

∫ t

0
dt1

[
e−t 0
0 0

]φ(n)2;t

2

φ
(n)
1;t

2

− ∫ ∞
t

dt1

[
0 0
0 et

]φ(n)2;t

2

φ
(n)
1;t

2

 (1.29)

with [
φ
(0)
1;t

φ
(0)
2;t

]
= 0 (1.30)

The goal is to determine the unstable manifold using an approximate expression of the flow and the definition (1.16).

1. Order zero [
φ
(1)
1;t

φ
(1)
2;t

]
=

[
e−t x1

0

]
(1.31)

2. Order one:[
φ
(1)
1;t

φ
(1)
2;t

]
=

[
e−t x1

0

]
+

∫ t

0
dt1

[
e−t+t1 0

0 0

] [
0

x21 e
−2 t1

]
−
∫ ∞
t

dt1

[
0 0
0 et−t1

] [
0

x21 e
−2 t1

]
(1.32)

whence [
φ
(1)
1;t

φ
(1)
2;t

]
=

[
e−t x1

−x21
3 e
−2 t

]
(1.33)

We see that (1.16) yields

h(x1) = −
x21
3

+ . . . (1.34)

3. Order two:[
φ
(2)
1;t

φ
(2)
2;t

]
=

[
e−t x1

0

]
+

∫ t

0
dt1

[
e−t+t1 0

0 0

][
x41
9 e
−4 t1

x21 e
−2 t1

]
−
∫ ∞
t

dt1

[
0 0
0 et−t1

][
x41
9 e
−4 t1

x21 e
−2 t1

]
(1.35)

yields [
φ
(2)
1;t

φ
(2)
2;t

]
=

[
x1 e

−t + x41
e−t−e−4 t

27

−x21
3 e
−2 t

]
(1.36)

We see that (1.16) does not receive any new contribution at this order.
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4. Order three: [
φ
(3)
1;t

φ
(3)
2;t

]
=

[
x1 e

−t

0

]
+

∫ t

0
dt1

[
e−t+t1 0

0 0

] [ x41
9 e
−4 t1

x21 e
−2 t + x81

e−2 t+e−8 t−2 e−5 t

729 + 2x51
e−2 t−e−5 t

27

]

−
∫ ∞
t

dt1

[
0 0
0 et−t1

][ x41
9 e
−4 t1

x21 e
−2 t + x81

e−2 t+e−8 t−2 e−5 t

729 + 2x51
e−2 t−e−5 t

27

]
(1.37)

whence

φ
(3)
1;t = e−t x1 + x41

e−t − e−4t

27
(1.38)

φ
(3)
2;t = −

x21
3

(
1 +

2x31
27

)
e−2 t +

x51
81
e−5 t +

x81
729

(
e−2 t

3
+
e−8 t

9
− e−5 t

3

)
(1.39)

The expression of the stable manifold at this accuracy is

h(x) = φ
(3)
2;0 = −

x21
3

(
1 +

x31
27

)
+O(x81) (1.40)

Note that it is not legitimate to write the explicit expression of the O(x81) monomial.

1.1.2 Graph method

If posit

φ2;t = h(φ1;t) (1.41)

we obtain the equation

φ̇1;t∂φ1;th(φ1;t) = h(φ1;t) + φ21;t (1.42)

Since (1.42) must hold independently of time we arrive to

(−x+ h2)∂xh = h+ x2 (1.43)

If we postulate

h(x) = c2 x
2 + c3 x

3 + . . . (1.44)

we obtain

(−x+ c22 x
4 + 2 c2 c3 x

5 + . . . )(2 c2 x+ 3 c3 x
2 + 4 c4 x

3 + 5 c5x
4 + . . . )

= (c2 + 1)x2 + c3 x
3 + c4 x

4 + c5 x
5 + . . . (1.45)

whence

c2 = −
1

3
(1.46)

and

c3 = c4 = 0 (1.47)

Finally we recover

−3 c5 + c32 = 0 ⇒ c5 = −
1

81
(1.48)
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A Gronwall’s Lemma

Lemma A.1. Let φ, α and β continuous and real valued on [t1, t2] with

β ≥ 0 (A.1)

and

φt ≤ αt +

∫ t

t1

ds βt φt (A.2)

Then

φt ≤ αt +

∫ t

t1

ds βs αs e
∫ t
s ds1 βs1 (A.3)

Proof. Let us observe that (A.2) implies for t ↓ t1
φt1 ≤ αt1 (A.4)

• Let us first suppose that φt and αt are differentiable. Then we can integrate the inequality

φ̇t ≤ α̇t + βt φt (A.5)

to obtain

φt ≤ e
∫ t
t1
ds βsφt1 +

∫ t

t1

ds α̇se
∫ t
s ds1 βs1

= e
∫ t
t1
ds βsφt1 + αt − αt1e

∫ t
t1
ds1 βs1 +

∫ t

t1

ds βs αse
∫ t
s ds1 βs1 (A.6)

whence using (A.4) the claim follows. The general proof proceeds as follows.

• Let us introduce

Ft =

∫ t

t1

ds βs φs ≥ φt − αt (A.7)

then we must have

Ḟt = βt φs ≤ βt αt + βt Ft (A.8)

Applying the result of the differentiable case we get into∫ t

t1

dt2 βt2 αt2 e
∫ t
t2
dt3 βt3 ≥ Ft ≥ φt − αt (A.9)

which is the claim of the proposition.
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