Lecture 06: invariant manifolds

Introduction and notation

The expounded material can be found in

- Chapter 2 of [1]
- Chapter 3 of [3]
- Chapter 2 of [2]

As usual we suppose that

$$
\begin{equation*}
\dot{\phi}_{t}=f \circ \phi_{t} \tag{0.1}
\end{equation*}
$$

is driven by a vector field sufficiently smooth to guarantee the existence of a flow $\mathbf{\Phi}: \mathbb{R} \times \mathcal{D} \mapsto \mathcal{D}$ (\mathcal{D} stand here as a generic symbol for the state space e.g. $\mathcal{D}=\mathbb{R}^{n}$) in terms of which we express the solution of (0.1) starting from \boldsymbol{x} at time $t=0$:

$$
\begin{equation*}
\boldsymbol{\phi}_{t}=\boldsymbol{\Phi}_{t} \circ \boldsymbol{x} \tag{0.2}
\end{equation*}
$$

Remark 0.1. Since we are dealing with time autonomous systems by a time translation we can always assign the initial condition at time $t=0$ and identify t as the time elapsed from the moment when the state of the system is given.

1 Hyperbolic fixed points

Definition 1.1. Let \boldsymbol{x}_{\star} a fixed point of (0.1) in \mathbb{R}^{n}. We say that \boldsymbol{x}_{\star} is hyperbolic if there exists a similarity transformation $\mathrm{T} \in \operatorname{End}\left(\mathbb{R}^{n}\right)$ such that

$$
\mathrm{T}\left(\partial_{\boldsymbol{x}} \otimes \boldsymbol{f}\right)\left(\boldsymbol{x}_{\star}\right) \mathrm{T}^{-1}=\left[\begin{array}{cc}
\mathrm{A}_{u} & 0 \tag{1.1}\\
0 & \mathrm{~A}_{s}
\end{array}\right]
$$

where $\mathrm{A}_{u} \in \operatorname{End}\left(\mathrm{R}^{n_{+}}\right), \mathrm{A}_{s} \in \operatorname{End}\left(\mathrm{R}^{n_{-}}\right)$

$$
\begin{equation*}
n_{+}+n_{-}=n \tag{1.2}
\end{equation*}
$$

and

1. $\operatorname{ReSpA} \mathrm{A}_{u}>0$
2. $\operatorname{ReSpA} \mathrm{A}_{s}<0$

Figure 1.1: Hyperbolic fixed point. In green the linear invariant subspace E_{s} such that $\mathrm{A}_{s}: \mathrm{E}_{s} \mapsto \mathrm{E}_{s}$ over which the flow is contracting. In red the linear invariant subspace E_{u} such that $\mathrm{A}_{u}: \mathrm{E}_{u} \mapsto \mathrm{E}_{u}$ over which the flow is expanding

2 Local manifold theorem

Definition 2.1. Let $\mathcal{U} \subset \mathbb{R}^{n}$ be an open set. Let $\mathcal{S} \subset \mathbb{R}^{n}$ have the structure of a differentiable manifold. For $\boldsymbol{x} \in \mathcal{U}$, let $\left(t_{1}^{x}, t_{2}^{x}\right) \ni 0$ be the maximal interval such that $\mathbf{\Phi}_{t}(\boldsymbol{x}) \in \mathcal{U}$ for all $t \in\left(t_{1}^{x}, t_{2}^{x}\right)$. \mathcal{S} is called a local invariant manifold if

$$
\begin{equation*}
\mathbf{\Phi}_{t}(\boldsymbol{x}) \in \mathcal{S} \quad \forall \boldsymbol{x} \in \mathcal{S} \cap \mathcal{U} \quad \& \quad \forall t \in\left(t_{1}^{x}, t_{2}^{x}\right) \tag{2.1}
\end{equation*}
$$

3 Local stable and unstable manifolds for hyperbolic fixed points

Definition 3.1. Let \boldsymbol{x}_{\star} be a singular hyperbolic point of \boldsymbol{f}, where \boldsymbol{f} is of class $\mathcal{C}^{r}, r \geq 2$, in a neighborhood of \boldsymbol{x}_{\star}. Let \mathcal{U} be aneighbourhood of \boldsymbol{x}_{\star}. We say that

- The local stable manifold is the set

$$
\begin{equation*}
W_{\mathrm{loc}}^{s}\left(\boldsymbol{x}_{\star}\right)=\left\{\boldsymbol{x} \in \mathcal{U} \mid \lim _{t \uparrow \infty} \boldsymbol{\Phi}_{t, t_{o}}(\boldsymbol{x})=\boldsymbol{x}_{\star} \& \boldsymbol{\Phi}_{t, t_{o}}(\boldsymbol{x}) \in \mathcal{U} \quad \forall t \geq 0\right\} \tag{3.1}
\end{equation*}
$$

- The local unstable manifold is the set

$$
\begin{equation*}
W_{\mathrm{loc}}^{u}\left(\boldsymbol{x}_{\star}\right)=\left\{\boldsymbol{x} \in \mathcal{U} \mid \lim _{t \uparrow-\infty} \boldsymbol{\Phi}_{t, t_{o}}(\boldsymbol{x})=\boldsymbol{x}_{\star} \& \boldsymbol{\Phi}_{t, t_{o}}(\boldsymbol{x}) \in \mathcal{U} \forall t \leq 0\right\} \tag{3.2}
\end{equation*}
$$

Some remarks are in order

- The definition is given for time non-autonomous flows. For autonomous flows $\boldsymbol{\Phi}_{t, t_{o}} \equiv \boldsymbol{\Phi}_{t-t_{o}}$ as noticed in the introduction.
- The definitions (3.1), (3.2) are mapped into each other by a time reversal $t \mapsto-t$ operation.
- Requiring the conditions $\boldsymbol{x} \in \mathcal{U}$ and $\boldsymbol{\Phi}_{t, t_{o}} \circ \boldsymbol{x}$ to be simultaneously verified implies that as the time elapses from the moment t_{o} when the state of the system is assigned, the flow cannot generate any "expansion". In other words, with slight abuse of language

$$
\begin{equation*}
\mathbf{\Phi}_{t, t_{o}}(\mathcal{U}) \subseteq \mathcal{U} \tag{3.3}
\end{equation*}
$$

- In the linear case

$$
\begin{equation*}
f(x)=\mathrm{A} \cdot \boldsymbol{x} \tag{3.4}
\end{equation*}
$$

The local stable and unstable manifolds respectively coincides the linear subspaces $\mathrm{E}_{s} \subset \mathbb{R}^{n}$

$$
\begin{equation*}
\mathrm{A}_{s}: \mathrm{E}_{s} \mapsto \mathrm{E}_{s} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{A}_{u}: \mathrm{E}_{u} \mapsto \mathrm{E}_{u} \tag{3.6}
\end{equation*}
$$

over which the matrix $\mathrm{A}=\mathrm{A}_{u} \oplus \mathrm{~A}_{s}$ acts as the generator of a contraction as the time respectively grows to $+\infty$ or decreases to $-\infty$.

A general theorem which we will prove in the following lecture guarantees that the terminology "manifolds" is indeed appropriate.

4 Examples

4.1 First example

Let us consider the system

$$
\left[\begin{array}{c}
\dot{\phi}_{1 ; t} \tag{4.1}\\
\dot{\phi}_{2 ; t}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{c}
\phi_{1 ; t} \\
\phi_{2 ; t}
\end{array}\right]-\varepsilon\left[\begin{array}{c}
0 \\
\phi_{1 ; t}^{n}
\end{array}\right]
$$

for some $n \in \mathbb{N}$ with initial data

$$
\left[\begin{array}{l}
\phi_{1 ; 0} \tag{4.2}\\
\phi_{2 ; 0}
\end{array}\right]=\left[\begin{array}{l}
x_{1 ; 0} \\
x_{2 ; 0}
\end{array}\right]
$$

Independently of ε (4.9) admits a unique fixed point in the origin of the coordinate system.

4.1.1 Linear case

Let us first set ε to zero. Then the system admits the solution

$$
\left[\begin{array}{l}
\phi_{1 ; t} \tag{4.3}\\
\phi_{2 ; t}
\end{array}\right]=\left[\begin{array}{c}
e^{-t} x_{1} \\
e^{n t} x_{2}
\end{array}\right]
$$

Hence

$$
\mathrm{E}_{s}=\operatorname{span}\left[\begin{array}{l}
1 \tag{4.4}\\
0
\end{array}\right] \quad \& \quad \mathrm{E}_{u}=\operatorname{span}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Figure 4.1: Phase-plane plot of the vector field (blue) with stable manifold (green) and unstable manifold (red) for $\varepsilon=0.5$ and $n=3$

Figure 4.2: Phase-plane plot of the vector field (blue) with stable manifold (green) and unstable manifold (red) for $\varepsilon=0.5$ and $n=9$. Note the flattening of the stable manifold in comparison with the case $n=3$.

4.1.2 Non-linear case

For non-vanishing ε we have instead

$$
\left[\begin{array}{c}
\phi_{1 ; t} \tag{4.5}\\
\phi_{2 ; t}
\end{array}\right]=\left[\begin{array}{c}
e^{-t} x_{1} \\
e^{2 t} x_{2}+\varepsilon \int_{0}^{t} d s e^{2(t-s)} e^{-n s} x_{1}^{n}
\end{array}\right]
$$

After straightforward algebra we see that

$$
\begin{equation*}
\phi_{2 ; t}=e^{2 t}\left(x_{2}+\varepsilon \frac{x_{1}^{n}}{n+2}\right)-\varepsilon \frac{x_{1}^{n} e^{-(n-2) t}}{2+n} \tag{4.6}
\end{equation*}
$$

It follows immediately that for $n>2$

$$
\begin{equation*}
W_{\mathrm{loc}}^{s}(\mathbf{0})=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \left\lvert\, x_{2}=-\varepsilon \frac{x_{1}^{n}}{n+2}\right.\right\} \tag{4.7}
\end{equation*}
$$

whilst

$$
\begin{equation*}
W_{\mathrm{loc}}^{u}(\mathbf{0})=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid x_{1}=0\right\} \tag{4.8}
\end{equation*}
$$

4.2 Second example

Let us consider now

$$
\left[\begin{array}{c}
\dot{\phi}_{1 ; t} \tag{4.9}\\
\dot{\phi}_{2 ; t} \\
\dot{\phi}_{3 ; t}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\phi_{1 ; t} \\
\phi_{2 ; t} \\
\phi_{3 ; t}
\end{array}\right]-\varepsilon\left[\begin{array}{c}
0 \\
\phi_{1 ; t}^{2} \\
\phi_{1 ; t}^{2}
\end{array}\right]
$$

with initial data

$$
\left[\begin{array}{l}
\phi_{1 ; 0} \tag{4.10}\\
\phi_{2 ; 0} \\
\phi_{3 ; 0}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Explicit integration yields

$$
\left[\begin{array}{c}
\phi_{1 ; t} \tag{4.11}\\
\phi_{2 ; t} \\
\phi_{3 ; t}
\end{array}\right]=\left[\begin{array}{c}
e^{-t} x_{1} \\
e^{-t} x_{2}+x_{1}^{2} \int_{0}^{t} d s e^{-t+s} e^{-2 s} \\
e^{t} x_{3}+x_{1}^{2} \int_{0}^{t} d s e^{t-s} e^{-2 s}
\end{array}\right]=\left[\begin{array}{c}
e^{-t} x_{1} \\
e^{-t} x_{2}+x_{1}^{2}\left(e^{-t}-e^{-2 t}\right) \\
e^{t} x_{3}+\frac{x_{1}^{2}}{3}\left(e^{t}-e^{-2 t}\right)
\end{array}\right]
$$

it follows that

$$
\begin{equation*}
W_{\mathrm{loc}}^{s}(\mathbf{0})=\left\{\boldsymbol{x} \in \mathbb{R}^{3} \left\lvert\, x_{3}=-\frac{x_{1}^{2}}{3}\right.\right\} \tag{4.12}
\end{equation*}
$$

whilst

$$
\begin{equation*}
W_{\mathrm{loc}}^{u}(\mathbf{0})=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid x_{1}=x_{2}=0\right\} \tag{4.13}
\end{equation*}
$$

References

[1] N. Berglund. Geometrical theory of dynamical systems, 2007, arXiv:math/0111177.
[2] L. Perko. Differential Equations and Dynamical Systems. Springer, 3rd edition, 2006.
[3] S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos, volume 2 of Texts in applied mathematics. Springer, 2 edition, 2003.

