
Lecture 06: invariant manifolds

Introduction and notation

The expounded material can be found in

• Chapter 2 of [1]

• Chapter 3 of [3]

• Chapter 2 of [2]

As usual we suppose that

φ̇t = f ◦ φt (0.1)

is driven by a vector field sufficiently smooth to guarantee the existence of a flow Φ : R×D 7→ D (D stand here as
a generic symbol for the state space e.g. D = Rn) in terms of which we express the solution of (0.1) starting from x
at time t = 0:

φt = Φt ◦ x (0.2)

Remark 0.1. Since we are dealing with time autonomous systems by a time translation we can always assign the
initial condition at time t = 0 and identify t as the time elapsed from the moment when the state of the system is
given.

1 Hyperbolic fixed points

Definition 1.1. Let x? a fixed point of (0.1) in Rn. We say that x? is hyperbolic if there exists a similarity transfor-
mation T ∈ End(Rn) such that

T(∂x ⊗ f)(x?)T
−1 =

[
Au 0
0 As

]
(1.1)

where Au ∈ End(Rn+), As ∈ End(Rn−)

n+ + n− = n (1.2)

and
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1. ReSpAu > 0

2. ReSpAs < 0
Figure 1.1: Hyperbolic fixed point. In green the lin-
ear invariant subspace Es such that As : Es 7→ Es

over which the flow is contracting. In red the linear
invariant subspace Eu such that Au : Eu 7→ Eu over
which the flow is expanding

2 Local manifold theorem

Definition 2.1. Let U ⊂ Rn be an open set. Let S ⊂ Rn have the structure of a differentiable manifold. For x ∈ U , let
(tx1 , t

x
2) 3 0 be the maximal interval such that Φt(x) ∈ U for all t ∈ (tx1 , t

x
2). S is called a local invariant manifold

if

Φt(x) ∈ S ∀x ∈ S ∩ U & ∀ t ∈ (tx1 , t
x
2)

U

S

x?

x

Φt ◦ x
(2.1)

3 Local stable and unstable manifolds for hyperbolic fixed points

Definition 3.1. Let x? be a singular hyperbolic point of f , where f is of class Cr, r ≥ 2, in a neighborhood of x?.
Let U be aneighbourhood of x?. We say that

• The local stable manifold is the set

W s
loc(x?) =

{
x ∈ U | lim

t↑∞
Φt,to(x) = x? & Φt,to(x) ∈ U ∀ t ≥ 0

}
(3.1)

• The local unstable manifold is the set

W u
loc(x?) =

{
x ∈ U | lim

t↑−∞
Φt,to(x) = x? & Φt,to(x) ∈ U ∀ t ≤ 0

}
(3.2)

Some remarks are in order

• The definition is given for time non-autonomous flows. For autonomous flows Φt,to ≡ Φt−to as noticed in the
introduction.
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• The definitions (3.1), (3.2) are mapped into each other by a time reversal t 7→ −t operation.

• Requiring the conditions x ∈ U and Φt,to ◦ x to be simultaneously verified implies that as the time elapses
from the moment to when the state of the system is assigned, the flow cannot generate any “expansion”. In
other words, with slight abuse of language

Φt,to(U) ⊆ U (3.3)

• In the linear case

f(x) = A · x (3.4)

The local stable and unstable manifolds respectively coincides the linear subspaces Es ⊂ Rn

As : Es 7→ Es (3.5)

and

Au : Eu 7→ Eu (3.6)

over which the matrix A = Au⊕As acts as the generator of a contraction as the time respectively grows to +∞
or decreases to −∞.

A general theorem which we will prove in the following lecture guarantees that the terminology “manifolds” is indeed
appropriate.

4 Examples

4.1 First example

Let us consider the system [
φ̇1;t
φ̇2;t

]
=

[
−1 0
0 2

] [
φ1;t
φ2;t

]
− ε

[
0
φn1;t

]
(4.1)

for some n ∈ N with initial data [
φ1;0
φ2;0

]
=

[
x1;0
x2;0

]
(4.2)

Independently of ε (4.9) admits a unique fixed point in the origin of the coordinate system.

4.1.1 Linear case

Let us first set ε to zero. Then the system admits the solution[
φ1;t
φ2;t

]
=

[
e−t x1
en t x2

]
(4.3)

Hence

Es = span

[
1
0

]
& Eu = span

[
0
1

]
(4.4)
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Figure 4.1: Phase-plane plot of the vector field (blue)
with stable manifold (green) and unstable manifold
(red) for ε = 0.5 and n = 3

Figure 4.2: Phase-plane plot of the vector field (blue)
with stable manifold (green) and unstable manifold
(red) for ε = 0.5 and n = 9. Note the flattening
of the stable manifold in comparison with the case
n = 3.

4.1.2 Non-linear case

For non-vanishing ε we have instead[
φ1;t
φ2;t

]
=

[
e−t x1

e2 t x2 + ε
∫ t
0 ds e

2 (t−s)e−n s xn1

]
(4.5)

After straightforward algebra we see that

φ2;t = e2 t
(
x2 + ε

xn1
n+ 2

)
− εx

n
1 e
−(n−2) t

2 + n
(4.6)

It follows immediately that for n > 2

W s
loc(0) =

{
x ∈ R2 | x2 = −ε

xn1
n+ 2

}
(4.7)

whilst

W u
loc(0) =

{
x ∈ R2 | x1 = 0

}
(4.8)

4.2 Second example

Let us consider now φ̇1;tφ̇2;t
φ̇3;t

 =

−1 0 0
0 −1 0
0 0 1

φ1;tφ2;t
φ3;t

− ε
 0
φ21;t
φ21;t

 (4.9)

with initial data φ1;0φ2;0
φ3;0

 =

x1x2
x3

 (4.10)
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Explicit integration yieldsφ1;tφ2;t
φ3;t

 =

 e−t x1
e−t x2 + x21

∫ t
0 dse

−t+se−2 s

et x3 + x21
∫ t
0 dse

t−se−2 s

 =

 e−t x1
e−t x2 + x21

(
e−t − e−2 t

)
et x3 +

x2
1
3

(
et − e−2 t

)
 (4.11)

it follows that

W s
loc(0) =

{
x ∈ R3 | x3 = −

x21
3

}
(4.12)

whilst

W u
loc(0) =

{
x ∈ R2 | x1 = x2 = 0

}
(4.13)
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