
Lecture 05: stability of fixed points of non-linear vector field

Introduction and notation

The expounded material can be found in

• Chapter 2 of [1]

As usual we suppose that

φ̇t = f ◦ φt (0.1)

is driven by a vector field sufficiently smooth to guarantee the existence of a flow Φ : R×D 7→ D (D stand here as a
generic symbol for the state space e.g. D = Rn) in terms of which we express the solution of (0.1) starting from x at
time t = 0:

φt = Φt ◦ x (0.2)

Definition 0.1. We say that x? is a singular point or f if

f(x?) = 0 (0.3)

We will refer to a singular point of a vector field driving an ordinary differential equation such as (0.1) as a fixed
point.

1 Conjugation for flows

Proposition 1.1 (Conjugation by a diffeomorphism). If Φt,t0 is the flow of f and Ψt,t0 is the flow defined by the
push-forward differential

u = h∗f = [(∂x ⊗ h) · f ] ◦ h−1 (1.1)

then

Ψt,t0 = h ◦Φt,t0 ◦ h−1 (1.2)

Proof. The proof follows from the application of Leibnitz rule

d

dt
Ψt,to =

d

dt

(
h ◦Φt,to ◦ h−1

)
= (Φ̇t,to ◦ h−1) · (∂xh)(Φt,to ◦ h−1) (1.3)

Upon noticing that

Φ̇t,to ◦ h−1 = f
(
Φt,to ◦ h−1

)
(1.4)

we arrive at
d

dt
Ψt,to = f

(
Φt,to ◦ h−1

)
· (∂xh)(Φt,to ◦ h−1)

f
(
h−1 ◦Ψt,to

)
· (∂xh)(h−1 ◦Ψt,to) = h∗f |h−1◦Ψt,to

= u(Ψt,to) (1.5)

and Cauchy-Lipschitz theorem.
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2 Rectification theorem

The rectification theorem explains why we shall be concerned with singular points (or later on, with invariant sets) of
the vector field f driving (0.1).

Theorem 2.1. Let f : Rn → Rn such that f(xo) 6= 0. Then there exists a diffeomorphism h in a neighborhood of xo

such that

h?f = [(∂x ⊗ h) · f ] ◦ h−1 (2.1)

is constant.

Proof. Modulo a translation and a variable permutation it is non-restrictive to identify xo with the origin and to
assume that the first component of f at the origin is non-vanishing. In formulae:

f1 = e1 · f(0) 6= 0 (2.2)

for e1 the first element of the canonical basis of Rn. Let Φt the flow fundamental solution of (0.1). We can construct
the map ρ:

ρ : R× Rn−1 7→ Rn (2.3)

by associating to any point in the neighborhood of the origin of Rn

x = [x1 , x2 , . . . , xn]t ∈ Rn (2.4)

a vector

y = [0 , x2 , . . . , xn]t ∈ Rn−1 (2.5)

and then defining ρ as

ρ(t,y) := Φt(0,y) (2.6)

The map ρ is a diffeomorphism in a neighborhood of the origin of R × Rn−1. Namely since the flow evaluated at
t = 0 coincides with the identity map

Φ0 ◦ x = x (2.7)

it follows that

• the diffeomorphism coincides with the identity map if t = 0

ρ(0,y) ≡ Φ0(0,y) = [0, x2, . . . , xn]t (2.8)

• the differential at the origin is the identity map on Rn−1

(∂y ⊗ ρ)(0,0) = 0⊕ 1n−1 (2.9)

As a consequence we have that locally around the origin the diffeomorphism coincides with its differential

dρ(t,y) = f(0)dt+ dy · (∂yφ0)(0,0) (2.10)
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which on its turn is equal to

dρ(t,y) = f(0)dt+
n∑

i=2

eidx
i =


e1 · f(0) 0 0 . . . 0
e2 · f(0) 1 0 . . . 0
e3 · f(0) 0 1 . . . 0

...
en · f(0) 0 0 . . . 1




dt
dx2
dx3
...

dxn

 := R ·
[
dt
dy

]
(2.11)

for ei the i-th element of the canonical basis of Rn. Since (f(0), e2, . . . , en) forms a basis for Rn, we conclude
that the matrix R is non singular and therefore that dρ(t,y) is invertible. By the local inversion theorem ρ is a local
diffeomorphism. Let u = (1, 0, . . . , 0)tr and Ψt the flow associated to u. Then the following chain of equalities
holds

ρ ◦Ψt(x) ≡ ρ(x1 + t,y) =

Φx1+t(0,y) = Φt ◦Φx1(0,y) = Φt ◦ ρ(x) (2.12)

where

• the first equality follows from (2.6);

• the second from the definition of flow;

• the third using again (2.6).

We have therefore proved that

Φt = ρ ◦Ψt ◦ ρ−1 (2.13)

which is the claim of the theorem.

In other words, whenever f is non-vanishing we can always find a change of coordinates such that the dynamics
is locally described by the flow generated by a constant vector field.

3 Stability

The idea of stability: for any given distance-value from the fixed point there exist initial data in the neighborhood of
the fixed point such that after waiting a sufficiently long time their image through the flow is mapped to a distance
equal or smaller than the pre-assigned one

Definition 3.1. Let x? a fixed point for (0.1). The fixed point is stable if for all ε > 0 we can find a δ(ε) > 0 such
that whenever

‖ x− x? ‖≤ δ(ε) (3.1)

there exist a t∗ > 0 such that for any t ≥ t? we have

‖ Φt ◦ x− x? ‖≤ ε (3.2)

A stronger version of stability is
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Definition 3.2. We say that a fixed point x? is asymptotically stable if it is stable and there is a δ such that for any x

‖ x− x? ‖≤ δ (3.3)

we have

lim
t↑∞

Φt ◦ x = x? (3.4)

We can straightforwardly assess the stability of a fixed point if the vector field f in (0.1) is linear:

f(x) = A · x (3.5)

Namely stability is equivalent to the condition that the real part of all the eigenvalues of A are negative definite. In
other words the spectrum Sp of A must satisfy

Re SpA ≤ 0 (3.6)

In particular:

• the fixed point is stable if

Re SpA = 0 (3.7)

as in the case of elliptic fixed points of Hamiltonian flows. Under our hypotheses (0.1) is real-valued. Hence
(3.7) is equivalent to say that the eigenvalues of A are purely imaginary. As a consequence the flow describes
periodic orbits in the neighborhood of the fixed point, which in the present example coincides with the origin.

• Asymptotic stability in the linear case is equivalent to

Re SpA < 0 (3.8)

The fixed point in the origin is a sink. It can be approached by the flow with spiraling trajectories if the
eigenvalues occur in complex conjugate pairs.

Definition 3.3. The basin of attraction of an asymptotically stable fixed point x? is the set{
x ∈ D | lim

t↑∞
Φt ◦ x = x?

}
(3.9)

3.1 Instablility

The idea of instability: there exists a distance-value from the fixed point such that the image through the flow of any
initial data in the neighborhood of the fixed point after waiting a sufficiently long time is mapped to a distance equal
or smaller than the pre-assigned one

Definition 3.4. The fixed point x? is unstable if there exists a ε > 0 such that for any δ > 0 there exist an initial
data x satisfying

‖ x− x? ‖≤ δ (3.10)

and a t∗ > 0 such that for any t ≥ t? we have

‖ Φt ◦ x− x? ‖≥ ε (3.11)
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4 Lyapunov function

It is convenient to start the discussion by defining

Definition 4.1. the positive orbit through xo of the flow solution of (0.1) is the set

O+ = {x ∈ Rn | x = Φt ◦ xo for some t ≥ 0} (4.1)

The negative orbit is then the set

O− = {x ∈ Rn | x = Φt ◦ xo for some t < 0} (4.2)

If the driving vector field f is non-linear asymptotic stability can be straightforwardly proven if f is gradient-like.
This means that

f(x) = −∂xU (4.3)

for some

U : Rn 7→ R (4.4)

such that

(∂xU)(x?) = 0 (4.5a)

Sp(∂x ⊗ ∂xU)(x?) < 0 (4.5b)

are simultaneously verified. In such a case from

φ̇t = −∂φt
U (4.6)

we can write

0 ≤
∫ T

0
dt ‖ φ̇t ‖2= −

∫ T

0
dt φ̇t · (∂φt

U)(φt) (4.7)

The integrand in the rightmost expression is an exact differential. Hence we must have

U ◦ΦT (x) ≤ U(x) (4.8)

where the equality sign occurs only if x = x?. The fixed point is asymptotically stable. Gradient-like flows are
non-generic. We can nevertheless reduce the notion of stability to the existence of a suitable scalar function always
decreasing whenever evaluated along the flow:

Theorem 4.1. Let x? a singular point of f in U ⊆ Rn and let U? = U/ {x?}. If there exists a function

V : U 7→ R (4.9)

such that

(1 ) V (x) > V (x?) for all x ∈ U;

(2 ) the derivative of V along the flow of f is negative definite

V̇ (Φt ◦ x) = (f · ∂φt
V )(Φt ◦ x) ≤ 0 ∀x ∈ U? (4.10)
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then x? is stable. Furthermore if

(3 ) the derivative of V along the flow of f is strictly negative definite on U?

V̇ (Φt ◦ x) < 0 ∀x ∈ U? (4.11)

then x? is asymptotically stable.

Proof. The proof consists of two steps.

• Stability: let us consider the closed ball

B̄(x?, ε) ∈ U (4.12)

The boundary of the ball S := B̄(x?, ε) is compact and therefore the function V must have a minimum on it:

Vm = min
x∈S

V (x) (4.13)

We can therefore construct an open set V such that

V = {x ∈ B(x?, ε) | V (x) < Vm} ⊂ B̄(x?, ε) (4.14)

By hypothesis (1 ) we have x? ∈ V . Hence there must exist a δ such that open ball B(x?, δ)

B(x?, δ) ⊂ V ⊂ B̄(x?, ε) (4.15)

consists of points in the support of V such that

V (x) < Vm ∀x ∈ B(x?, δ) (4.16)

Hypothesis (2 ) then implies that for all t ≥ 0

V (Φt ◦ x) < Vm ∀x ∈ B(x?, δ) (4.17)

which means

Φt ◦ x ∈ V ⊂ B̄(x?, ε) ⇒ ‖ Φt ◦ x− x? ‖≤ ε (4.18)

Since ε is arbitrary we thus proved that x? is stable.

• Asymptotic stability. By (4.18) the positive orbit of any x ∈ V is bounded. Hence we can sample the flow
along a sequence {tn}∞n=0 such that

xn := Φtn(x)
n↑∞→ y? (4.19)

for some

y? ∈ V̄ (4.20)

Consider now the function

Ṽ : R 7→ R (4.21)

defined by

Ṽ (t) := V (Φt ◦ x) (4.22)

we notice that
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1. it is strictly monotonically decreasing;

2. it admits a convergent sub-sequence

Ṽn = V (xn) ≡ V (Φt ◦ x)
n↑∞→ V (y?) (4.23)

As a consequence we must have

lim
t↑∞

V (Φt ◦ x) = V (y?) (4.24)

In order to complete the proof of the theorem, we need only to show that

y? = x? (4.25)

necessarily. Indeed let us suppose that (4.25) does not hold true. Then it is possible to construct for some δ > 0
the compact set

K =
{
x ∈ V̄ | V (y?) ≤ V (x) ≤ V (y?) + δ

}
(4.26)

By condition (3 ) the inequality

V (Φt ◦ x)− V (x) < 0 (4.27)

is always satisfied in U?. By (4.24) there must also be a t̃ sufficiently large that

x ∈ K & V (Φt ◦ x)− V (x) < c t < 0 ∀ t ≥ t̃ (4.28)

are simultaneously satisfied. Namely, sinceK is compact, we know that there exists the strictly negative constant
c

c = max
x∈K

dV

dt
< 0 (4.29)

which provides for (4.28) to be well-posed. But if (4.28) is well-posed then

lim
t↑∞

V (Φt ◦ x) < lim
t↑∞
{V (x) + c t} = −∞ (4.30)

which contradicts the hypothesis (1 ). The conclusion is that (4.25) must hold true.

Note that (4.25 does not incur in any contradiction because hypothesis (3 ) allows the derivative of the Lyapunov
function to vanish at the singular point.

4.1 Construction of the Lyapunov function for the linearized flow

Proposition 4.1. Let us suppose that the singular point x? of the vector field f is linearly asymptotically stable. Then
it is asymptotically stable.

Proof. Let

y := x− x? (4.31)
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denote deviations from the singular point. The linearized flow of (0.1) is

φ̇′
t = A · φ′

t (4.32)

where

A := (∂x ⊗ f)(x?) (4.33)

Linear asymptotic stability implies the bound

‖ Ft · y ‖≤ Pn(t) e−|a| t ‖ y ‖ (4.34)

where by hypothesis

a = max Re SpA < 0 (4.35)

and Pn(t) is a polynomial in t of degree at most n for n the dimension of the space. To prove the proposition it is
sufficient to construct a Lyapunov function V in a neighborhood of x?. To this goal let us write

f(x) = A · (x− x?) + g(x;x?) (4.36)

where the vector field g is defined by a Taylor expansion of f around the singular point. Hence we can find a constant
K ∈ R+ such that

‖ g(x;x?) ‖≤ K ‖ y ‖2 (4.37)

We will look for a Lyapunov function of the form

V ◦Φt(x) = 〈Φt ◦ x− x? ,Q · [Φt ◦ x− x?]〉 (4.38)

for some suitable positive time-independent matrix Q. To prove asymptotic stability we must have

0 > V̇ ◦Φt(x)

= 〈Φ̇t ◦ x ,Q · [Φt ◦ x− x?]〉+ 〈Φt ◦ x− x? ,Q · Φ̇t ◦ x〉
= 〈Φt ◦ x− x? , (A

tQ + QA) · [Φt ◦ x− x?]〉
+2 〈g(x;x?) ,Q · [Φt ◦ x− x?]〉+ 〈g(x;x?) ,Q · g(x;x?)〉 (4.39)

using the definition of g we can bound from above V̇ as

V̇ ◦Φt(x) ≤ 〈Φt ◦ x− x? , (A
tQ + QA) · [Φt ◦ x− x?]〉+ 2 K̃ ‖ Φt ◦ x− x? ‖3 (4.40)

for a suitable choice of a constant K̃ ∈ R+. Since the first term is quadratic in Φt ◦ x − x? the claim holds if we
can show that under our working hypotheses it is always possible to choose Q such that AtQ+QA is strictly negative
definite. This is so because linear asymptotic stability implies that

Q =

∫ ∞
0

dt eA
t teA t (4.41)

is well-defined. Furthermore, a direct calculation shows that

AtQ + QA =

∫ ∞
0

dt
d

dt
eA

t teA t = −1n (4.42)

The implication is that if we choose Q as in (4.41), then

V̇ ◦Φt(x) ≤ − ‖ Φt ◦ x− x? ‖2 +2 K̃ ‖ Φt ◦ x− x? ‖3 (4.43)

is a strict Lyapunov function for any

‖ Φt ◦ x− x? ‖<
1

2K
(4.44)
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