
Lecture 04: Hamiltonian linear systems

Introduction

The expounded material can be found in

• Chapter 1 of [3]

1 Hamiltonian dynamical systems

Let us identify R2n as the “phase space” of a dynamical systems described by local coordinates x.

Definition 1.1. We call the vector field

f : R× R2n 7→ R2n (1.1)

Hamiltonian if

f(t,x) = J · ∂xH(t,x) (1.2)

where

H : R× R2n 7→ R (1.3)

is a differentiable scalar function which we will refer to as the Hamiltonian and

J = −Jt (1.4)

is taken either of the form

J :=

[
0 1n
−1n 0

]
(1.5)

for 1n the identity map over Rn or equivalently of the “similar” form

J =
n⊕
i=1

[
0 1
−1 0

]
(1.6)

Note that disregarding of the representation J2 = −12n.

Darboux theorem [1, 2] provides a simple physical interpretation of (1.5),(1.6). They amount to choose local
coordinates in an flat Euclidean phase space (more generally: “co-tangent bundle” T ∗M of a manifold M ) such that

1. x = q ⊕ p where q ,p ∈ Rn are vectors respectively specifying the coordinates of position and momenta of
the Hamiltonian system;
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2. the same system is a represented as the direct product of n vectors in R2 so that

x =
n⊕
i=1

[
qi
pi

]
(1.7)

It is intuitively obvious that there exists in general a similarity transformations connecting these equivalent parametriza-
tion of the same physical space.

Example 1.1. A two dimensional physical system obeying to Newton law is described by two positions and two
momentum variables. We have

q1
q2
p1
p2

 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



q1
p1
q2
p2



⇒


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


−1

(1.8)

Once we defined an Hamiltonian vector field, it is immediate to define an Hamiltonian ordinary differential equa-
tion

χ̇t = J · ∂χt
H(t,χt) (1.9a)

χto = x (1.9b)

From the theorem of existence and uniqueness we can immediately say that if H is sufficiently regular, any solution
of (1.9) can be described in terms of a flow

X : R× R× R2n 7→ R2n (1.10)

such that

χt = X(t; to,x) ≡Xt,to(x) (1.11)

1.1 Volume and energy conservation

Hamiltonian systems such as (1.9) are endowed with a special geometric structure, called symplectic, which underlies
several important general properties.

Proposition 1.1. The flow generated by (1.9) is volume preserving.

Proof. Liouville theorem relates the evolution of volumes to the divergence of the the vector field driving the evolu-
tion. For (1.9) we have

∂x · f(t,x) = ∂x · [J · ∂xH(t,x)] = −J : [(∂x ⊗ ∂x)H](t,x) = 0 (1.12)

since is the trace of a symmetric with an anti-symmetric matrix.
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In (1.12) and throughout these note we use for any A ,B ∈ End(R2n) the notation

A : B := trAtB (1.13)

which can be verified to provide a natural notion of scalar product between matrices.
In such a case

Proposition 1.2. If the function H (1.3) does not depend explicitly upon time it is the preserved by the dynamics.

Proof. The claim follow by direct calculation

Ḣ ◦ χt = f · ∂χt
H ◦ χt ≡ (J · ∂χt

H) ◦ χt · (∂χt
H) ◦ χt = J : [(∂χt

H)⊗ (∂χt
H)] ◦ χt = 0 (1.14)

since is the trace of a symmetric with an anti-symmetric matrix.

1.2 Symplectomorphisms

An important property of Hamiltonian dynamics is that it is preserved by a large class of diffeomorphisms. Suppose

φ ∈ Diff(R2n;R2n) (1.15)

such that

χt = φ ◦ ξt (1.16)

then if χt satisfies (1.9) we have

χ̇t = ξ̇t · ∂ξt ⊗ φ := Ft · ξ̇t (1.17)

where Ft ∈ End(R2n). On the other hand we must have

H(t,χt) = H̃(t, ξt) (1.18)

so that

(∂χt
H)(t,χt) = (∂χt

⊗ φ−1 ◦ χt)t · (∂ξtH̃)(t, ξt) = F−1tt · (∂ξtH̃)(t, ξt) (1.19)

We have therefore

ξ̇t = (F−1t JF−1tt ) · (∂ξtH̃)(t, ξt) (1.20)

Definition 1.2. A matrix A ∈ Rn×n is said symplectic (A ∈ Sp(2n)) if

AtJA = J (1.21)

We have therefore proved that

Proposition 1.3. Hamiltonian dynamics is invariant in form under the action of symplectomorphisms that under the
action of maps φ ∈ Diff(R2n; R2n) such that the linearized map

F = ∂x ⊗ φ : R2n 7→ R2n (1.22)

belongs to the symplectic group

F J Ft = J (1.23)
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2 Linear Hamiltonian systems

Definition 2.1. A linear ordinary differential equation over R2n is called Hamiltonian if it is amenable to the form

χ̇t = JHt · χt (2.1a)

χto = x (2.1b)

where J, Ht specify endomorphisms of Rn

J ,Ht : R× R2n 7→ R2n (2.2)

such that

Ht = Ht
t (2.3)

whilst J is the same as in (1.5), (1.6).

To neaten the notation we omit the eventual time-dependence of H wherever the choice does not cause ambiguity.

Example 2.1. The harmonic oscillator is a linear Hamiltonian system

q̇t = pt
ṗt = −ωqt

⇒
[
q̇t
ṗt

]
=

[
0 1
−1 0

] [
ω 0
0 1

] [
qt
pt

]
(2.4)

Linear Hamiltonian systems are naturally obtained from the linearization of a non-linear Hamiltonian system
around one solution. If we denote by χ′

t the differentiation of solutions of (1.9) with respect to any of the parametric
dependence, we obtain

χ̇′
t = χ′

t · ∂χt

[
J · ∂χt

H
]

:= JHt · χ′
t (2.5)

with

Ht := (∂χt
⊗ ∂χt

H)(χt) (2.6)

Remark 2.1. In general, to any symmetric matrix A we can associate a quadratic Hamiltonian

A · x =
1

2
∂x[A : (x⊗ x)] =

1

2
∂x〈x ,Ax〉 = ∂xH (2.7)

For the harmonic oscillator we find

H =
p2

2
+ ω

q2

2
(2.8)

2.1 Spectral properties of Symplectic matrices

Proposition 2.1. The determinant of a symplectic matrix is equal to ±1

Proof.

1 = det J = detAtJA = (det A)2 (2.9)
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Proposition 2.2. The fundamental solution F of (2.1) is a symplectic matrix with determinant equal to one.

Proof. ∀x1 x2 ∈ R2n one has

d

dt
(JFt,to · x1) · (Ft,to · x2) ≡

d

dt
〈JFt,tox1 ,Ft,to · x2〉

= −〈HtFt,to · x1 ,Ft,tox2〉+ 〈JFt,to · x1 , JHt · x2〉
= −〈HtFt,to · x1 ,Ft,tox2〉+ 〈JtJFt,to · x1 ,Ht · x2〉 = 0 (2.10)

We have thus proved that Ft,to J Ft,to is a conserved quantity of the dynamics. Since furthermore

Fto,to = 12n (2.11)

we finally have

Ft,to J Ft,to = J (2.12)

Finally, det 12n = 1 implies by continuity of the flow detFt,to = 1

Proposition 2.3. The eigenvalues of a real symplectic matrix occur

1. in pairs (λ, λ?) if λ is on the unit circle S1;

2. in pairs (λ , λ−1) if λ ∈ R;

3. in quartets (λ , λ? , λ−1 , λ−1 ?) if λ ∈ C/(S1 ∪ R)

Proof.

P (F) = det(F− λ12n) = det(J F Jt − 12n) = det(Ft
−1 − 12n) = det(F−1 − 12n) (2.13)

hence if λ is an eigenvalues so is λ−1. Furthermore, since F is real-valued if λ ∈ C is an eigenvalue so is λ∗.

3 Linear periodic Hamiltonian systems

Proposition 3.1. Let Ht = Ht+T for some T and for all t. Then the fundamental solution of (2.1) admits a Floquet
decomposition in the form

Ft,to = Pt,to e
JK (t−to) (3.1)

where P is periodic and symplectic, K is symmetric and eJK t is symplectic.

Proof. From the general case

Ft,to = Pt,to e
L (t−to) (3.2)

Then

J = Ftt,toJ Ft,to = eL
t (t−to) Pt

t,toJPt,to e
L (t−to) ⇒ Pt

t,toJPt,to = e−L
t (t−to) J e−L (t−to) (3.3)

Setting t = to + T it follows

e−L
t T Je−LT = J (3.4)
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Taking the time derivative

e−L
t (t−to)(−LtJ + JL) e−L (t−to) = Ṗt

t,toJPt,to + Pt
t,toJṖt,to (3.5)

and choosing L = JK with K symmetric yields

Ṗt
t,toJPt,to + Pt

t,toJṖt,to = 0 ⇒ Pt
t,toJPt,to = e−L

t (t−to)Je−L (t−to) = J (3.6)

Proposition 3.2. There exists a change of variables mapping (2.1) with Ht periodic into

ξ̇t = JK · ξt with K = Kt (3.7)

where K is constant.

Proof. Suppose that (2.1) holds and set

χt = Pt,to · ξt (3.8)

Taking the time derivative, we obtain

χ̇t =
d

dt
Pt,to · ξt =

Ḟt,to e
−JK (t−to) · ξt − Ft,to e

−JK (t−to)JK · ξt + Ft,to e
−JK (t−to) · ξ̇t = JHt · χt (3.9)

where the last equality must hold by hypothesis. Then, we observe that

Ḟt,to e
−JK (t−to) · ξt = JHtFt,to e

−JK (t−to) · ξt = JHtPt,to · ξt = JHt · χt (3.10)

hence we must also have

0 = −Ft,to e−JK (t−to)JK · ξt + Ft,to e
−JK (t−to) · ξ̇t = −Ft,to e−JK (t−to)

(
JK · ξt − ξ̇t

)
(3.11)

Proposition 3.3 (Gel’fand-Lidskii). Every curve F(t) in Sp(2n) t ∈ [0, T ] with step continuous derivatives satisfies
an equation of the form

Ḟ = JHFt , H = Ht (3.12)

Proof.

0 =
d

dt
Ftt J Ft ⇒ JḞt = −F t−1

t Ḟtt J Ft (3.13)

Define

Ht = Ft
−1
t ḞttJ = Ft

−1
JḞ−1t (3.14)

it is enough to prove that it is symmetric

Ht = Jt Ḟt F
−1
t = −Jt Ft Ḟ−1t = Jt Ft J

2Ḟ−1t = Ftt
−1

J Ḟ−1t (3.15)
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3.1 Stability of linear periodic Hamiltonian systems

Definition 3.1. Let (2.1) be periodic with period T . The flow defined by the fundamental solution F is

• stable if all solutions are bounded as t tends to infinity

• strongly (structurally) stable if it is stable and there exists an ε > 0 such that all H̃t symmetric and periodic of
period T such that ∣∣∣∣∣∣H− H̃

∣∣∣∣∣∣ < ε (3.16)

have stable fundamental solution.

Remark 3.1. Since Ft+T,0 = Ft+T,TFT,0 = Ft,0FT,0 it follows that for any positive integer n

Ft+nT,0 = Ft,0F
n
T,0 (3.17)

The necessary and sufficient condition for the stability of the flow is that FnT,0 is bounded as n tends to infinity.

Definition 3.2 (Monodromy). Let (2.1) be periodic of period T . Let F be the fundamental solution. The matrix

FT,0 = M (3.18)

is called the monodromy matrix.

Proposition 3.4. Necessary and sufficient condition for stability of the fundamental solution of a linear Hamiltonian
system is that M is diagonalizable with eigenvalues on the unit circle.

Definition 3.3 (Elliptic eigenvalues). If θ > 0 the elliptic eigenvalues are referred to as

• λ = eı θ first kind

• λ = e−ı θ second kind

The characterisation is intrinsic. Namely the normal form of an elliptic block is

Mθ =

[
cos θ sin θ
− sin θ cos θ

]
J =

[
0 1
−1 0

]
(3.19)

meaning that

dMθ

dt
= JMθ (3.20)

The eigenvectors are

[
cos θ sin θ
− sin θ cos θ

] [
1
ı

]
= eı θ

[
1
ı

]
with [1,−ı]J

[
1
ı

]
= 2 ı (3.21)

(first kind) and [
cos θ sin θ
− sin θ cos θ

] [
1
−ı

]
= e−ıθ

[
1
−ı

]
with [1, ı] · J

[
1
−ı

]
= −2 ı (3.22)
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second kind. In other words, the matrix Mθ is orthogonal

Mt
θ = M−1θ (3.23)

hence it is diagonalizable on a self-dual orthonormal basis with respect to standard scalar product over Cd

〈x1 ,x2〉 =
d∑
i=1

x?1:ix2:i (3.24)

Referring as vi i = 1, 2 as to the normalized eigenvector of, respectively, the first and second type, the symplectic
form which we will refer to as Krein invariant

〈vi , J · vj〉 = δij(−1)1+δi,1ı (3.25)

is preserved by the dynamics.

Proposition 3.5 (Krein). Let (2.1) be periodic of period T . Suppose the monodromy matrix to have 2 k distinct
eigenvalues on the unit circle. If the system is perturbed as

Ḟt;z = J (Ht + zQt)Ft;z (3.26)

with Qt+T = Qt ∈ End(R2n), positive definite and z ∈ C, Imz > 0 then no eigenvalue remains on the unit circle.

Proof. Let vt;θm = Ft,0;zv0;θm such that if M := FT,0;0 ≡ FT,0 is the unperturbed (i.e. for z = 0) monodromy

M · v0;θm = eıθm v0;θm (3.27)

Since vt;θm is a solution of the dynamics for finite z

〈vt;θm , Jt ·
d

dt
vt;θm〉 = 〈vt;θm , (Ht + zQt) · vt;θm〉 (3.28)

and

=〈vt;θm , Jt ·
d

dt
vt;θm〉 :=

1

2 ı
(〈vt;θm , Jt ·

d

dt
vt;θm〉 − 〈vt;θm , Jt ·

d

dt
vt;θm〉∗) = =〈vt;θm , zQt · vt;θm〉 (3.29)

where the last equality follows from

=〈vt;θm ,H · vt;θm〉 = 0 (3.30)

On the other hand

〈vt;θm , Jt ·
d

dt
vt;θm〉 − 〈vt;θm , Jt ·

d

dt
vt;θm〉∗

= 〈vt;θm , Jt
d

dt
vt;θm〉 − 〈J · vt;θm ,

d

dt
vt;θm〉∗

= 〈vt;θm , Jt
d

dt
vt;θm〉 − 〈

d

dt
vt;θm , J · vt;θm〉 =

d

dt
〈vt;θm , Jt vt;θm〉 (3.31)

owing to J = −Jt. We arrived to

d

dt
〈vt;θm , Jt vt;θm〉 = 2 ı=〈vt;θm , zQt · vt;θm〉 6= 0 (3.32)

which shows that 〈vt;θm , Jt vt;θm〉 cannot be a Krein invariant at finite z.
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The theorem extends trivially to the degenerate case.
The theorem can be used to discriminate between elliptic eigenvalues of the first and of the second kind. Namely

we can show that if SpQt > 0 and Imz > 0

θ(z) = θ(0) + z
dθ

dz
(0) +O(z2) := θ(0) + z θ′(0) +O(z2) (3.33)

then θ′(0) < 0. As a consequence

eıθ(z) = eı[θ(0)+<{z}θ
′(0)]−={z}θ′(0) (3.34)

moves outside the unit circle.

e−ıθ(z) = e−ı[θ(0)+<{z}θ
′(0)]+={z}θ′(0) (3.35)

moves inside the unit circle. To prove the claim we can use a perturbative argument. Suppose |z| � 1. Then

Mz = M + z

∫ T

0
dtMF−1t,0 JQt Ft,0 (3.36)

projecting on the unperturbed eigenvector

〈vθm , JtMz · vθm〉 = 〈vθm , JtM · vθm〉+ z

∫ T

0
dt 〈vθm , JtMF−1t,0 JQt Ft,0 · vθm〉 (3.37)

whence

〈vθm , JtMz · vθm〉 = 2 ı eıθm + z

∫ T

0
dt 〈vθm ,M−1

t
JtF−1t,0 JQt Ft,0vθm〉 (3.38)

The latter equality follows from

Mt JM = J (3.39)

Recalling that

Mt · vθm = M−1 · vθm = e−ıθmvθm (3.40)

we obtain

〈vθm , JtM · vθm〉 = 2 ı eıθm
[
1 +

z

2 ı

∫ T

0
dt 〈vθm ,Ftt,0Qt Ft,0 · vθm〉

]
(3.41)

On the other hand if

〈vθm(z) , J
tM · vθm(z)〉 = eı θm(z)2 ı ≈ eı θm(0)2 ı[1 + ı z θ′(0)] +O(z2) (3.42)

by comparison

θ′(0) = −1

2

∫ T

0
dt 〈vθm ,Ftt,0Qt Ft,0 · vθm〉 < 0 (3.43)

Theorem 3.1 (Krein). If a stable linear Hamiltonian system does not have degenerate eigenvalues of different kind
the system is strongly stable

Idea of the proof: The calculation above shows that elliptic eigenvalues of different kind exit the unit circle in
different ways. The result would be a dislocation of the eigenvalues, incompatible with the generation of a loxodromic
quartet.

9



References

[1] V. I. Arnold. Mathematical methods of classical mechanics, volume 60 of Graduate texts in mathematics.
Springer, 2 edition, 1989.

[2] H. Goldstein, C. P. Poole, and J. L. Safko. Classical mechanics. Addison Wesley, 2002.

[3] A. M. Ozorio de Almeida. Hamiltonian Systems: Chaos and Quantization. Monographs on Mathematical Physics.
Cambridge University Press, 1990.

10


