
Lecture 03: Non-autonomous linear systems

1 Non homogeneous linear systems

Let A ∈ End(Rn), consider the initial data problem

φ̇t = Aφt + f t

φ0 = xo (1.1)

Proposition 1.1. The unique solution of (1.1) is

φt = eA t xo +

∫ t

0
ds eA (t−s) f s (1.2)

Proof. The solution is obtained using the method of variation of constants:

φt = eA tψt (1.3)

then

eA t ψ̇t = f t ⇒ ψ̇t = e−A t f t (1.4)

thus

φt = eA t
(
xo +

∫ t

0
ds e−A s f s

)
(1.5)

Remark 1.1. The initial conditions are stored in the homogeneous part of the solution!!!

2 Linear non-autonomous dynamics

We consider the linear ordinary differential equation

φ̇t = At · φt (2.1a)

φto = x (2.1b)

We suppose the vector field f(t,x) = At · x driving (2.1a) to be smooth also in its time dependence

f ∈ Cr(R× Rn;Rn) (2.2)

Hence we can express the solution of (2.1) in terms of the linear flow describing the fundamental solution of (2.1a)

φt = Ft,to · x (2.3)
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Using “Picard”-iterations of (2.1a), the flow F is obtained as a time ordered exponential

Ft,to = 1+
∑
n>0

∫ t

to

dtn

∫ tn

to

dtn−1...

∫ t3

to

dt2

∫ t2

to

dt1 Atn Atn−1 . . .At2 At1 := T
{
e
∫ t
t0
dsAs

}
(2.4)

If

[At,As] = 0 ∀ t, s ⇒ Ft,to = e
∫ t
to
dsAs (2.5)

in particular, the time-order exponential reduces to the ordinary one if the matrix A is autonomous.

Remark 2.1.

Ft,0 = Ft,toFto,0 ⇒ Ft,to = Ft,0F
−1
to,0

(2.6)

thus also in the non-autonomous case it is enough to know Ft,0 in order to reconstruct the flow for other initial times.

Proposition 2.1. The solution of (2.1) is unique

Proof. Suppose there exist two solutions φt;1 and φt;2

φt;1 = φto;1 +

∫ t

to

dsAs · φs;1 i = 1, 2 (2.7)

Then

‖ φt;1 − φt;2 ‖≤
∫ t

to

ds ‖ As ‖ ‖ φs;1 − φs;2 ‖≤ a
∫ t

0
ds ‖ φs;1 − φs;2 ‖ (2.8)

where

a = sup
s,i,j
|Aij(s)| (2.9a)

whence the claim.

2.1 Periodic case

Consider

Ḟt,to = At Ft,to , At+T = At (2.10a)

lim
t↓to

Ft,to = 1 (2.10b)

Theorem 2.1 (Floquet). Let At = At+T for all t. Then the principal solution of (2.1a) can be written as

Ft,to = Pt,toe
B (t−to) (2.11)

where

Pt+T to = Ptto ∀ t
Pto to = 1 (2.12)

and B is a constant matrix.
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Proof. The proof proceed in three steps

1. We first prove that

Ft+T,to = Ft,to Fto+T,to (2.13)

To this goal let us define the auxiliary matrix

Gt,to := Ft+T,to = Ft+T,to+TFto+T,to (2.14)

We see that it satisfies

Ġt,to = Ḟt+T,to = At+T Ft+T,to = At Gt,to (2.15)

which is the same as (2.10a), with boundary condition

Gto,to := Fto+T,to (2.16)

Liouville theorem guarantees that

detFt,to 6= 0 ∀ t (2.17)

hence Ft,to is invertible. We can therefore construct the flow

F̃t,to = Gt,toF
−1
to+T,to

(2.18)

which now satisfies both (2.10a), and (2.10a) including the initial condition. Since the hypotheses of the theo-
rems of existence and uniqueness hold true, we must then have

Gt,toF
−1
to+T,to

≡ Ft+T,to+T = Ft,to ⇒ Ft+T,to = Ft,to Fto+T,to (2.19)

2. We now claim that there exists a matrix B such that

Fto+T,to = eBT (2.20)

To see this, let λi 6= 0 and mi, i = 1, . . . ,m be respectively the eigenvalues of Fto+T,to and their algebraic
multiplicities. Let

Fto+T,to =
m∑
i=1

(λiPi + Ni) (2.21)

be the decomposition of Fto+T,to into its semi-simple and nilpotent parts. Here Pi is the projector on the sub-
space spanned by the generalized eigenvectors associated to the eigenvalue λi and Ni is the nilpotent component
of F acting on that subspace. We recall that

PiPj = PjPi = δijPi (2.22)

and

NiNj = NjNi = δijN
2
i (2.23)

and that [Ni,Pj ] = 0. It follows that

B =
1

T

m∑
i=1

ln(λi)Pi − mi∑
j=1

(−Ni)
j

j λji

 (2.24)
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satisfies

eBT = Fto+T,to (2.25)

Namely the chain of equality

ln

{
m∑
i=1

(λi Pi + Ni)

}
= ln

{
m∑
i=1

λiPi

(
1+

Ni
λi

)}
=

m∑
i=1

{
ln(λi)Pi + ln

(
1+

Ni
λi

)}
(2.26)

holds true owing to the

(2.22) and (2.23). The matrix B so determined is unique modulo a phase associated to the winding number of
the imaginary part of the logarithms.

3. The third step consists in verifying that

Ptto = Ft,toe
−B (t−to). (2.27)

defines a periodic matrix. Namely we see that for all ∀ t ∈ R

Pt+T,to = Ft+T,to e
−B(t+T−to) = Ft,to e

BT e−B(t+T−to) = Pt,to (2.28)

Finally, it is straightforward to check that

Pto,to = Fto,to = 1 (2.29)

which completes the proof.

Floquet’s theorem shows that the solution of (2.10) for to = 0 can be written as

xt = Pt0 e
B t x (2.30)

Since Pt,to is periodic, the long-time behavior depends only on B. The eigenvalues of B are called the characteristic
exponents of the equation.

Definition 2.1 (monodromy). The matrix

M = eBT (2.31)

defined by Floquet’s theorem is called the monodromy matrix.

The eigenvalues of the monodromy matrix, called the characteristic multipliers, are exponentials of the charac-
teristic exponents times T . Computing the characteristic exponents is difficult in general, but the existence of the
representation (2.30) is already useful to classify the possible behaviors near a periodic orbit.

Example 2.1. Let us illustrate how formula (2.24) comes about in an elementary example

B = ln

[
λ 1
0 λ

]
= lnλ+ ln

[
1 1

λ
0 1

]
(2.32)

Since

ln(1 + x) = −
∞∑
n=1

(−x)n

n
(2.33)

then

ln

[
1 1

λ
0 1

]
:= −

∞∑
n=1

(−1)n

n

[
0 1

λ
0 0

]n
=

[
0 1

λ
0 0

]
(2.34)

owing to nilpotence.
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2.2 Linear perturbation theory

Consider a family of linear ODE’s

ẋt;µ = At:µxt;µ

ẋ0;µ = xo (2.35)

where A ∈ End(Rn) smoothly depends on µ. We want to study the solution in a neighborhood of some µ0. Let

x′t := ∂µxt;µ|µ=µ0
A′t = ∂µAt;µ|µ=µ0 (2.36)

The equation for the variation is

ẋ′ = At:µo · x′
t + A′t:µoxt;µ0 (2.37)

the solution is

x′
t =

∫ t

0
dsFt 0:µo F

−1
s 0:µo

A′s:µo · xs;µ0 (2.38)

since

x′
0 = 0 (2.39)
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