
Lecture 02: Notes on linear systems

Introduction

The expounded material can be found in

• ch. 2 of [2]

• ch. 2 of [1]

1 Some terminology and mathematical notation for linear maps

Let V1, V2 two vector spaces.

Definition 1.1. The map

A : V1 7→ V2 (1.1)

is linear if

• for any x1 ,x2 ∈ V1, is additive

A(x1 + x2) = Ax1 + Ax2

• for any c ∈ C and any x ∈ V1

A cx = cAx (1.2)

By definition a linear map preserves the algebraic structure of its domain, a vector space, as its image is still a
vector space. It is therefore an homomorphism. The collection of linear maps between the two vector spaces V1, V2

can be denoted as Hom(V1,V2). In particular, if V1 = V2 = V, we can write Hom(V,V) = End(V) and talk of the
set of endomorphisms of V. If A ∈ Hom(V1,V2) is invertible we can think of it as an element of GL(V1,V2) the
general linear group. Finally, in any basis of V = Rn, A is a matrix i.e. A ∈ Rn2

. In what follow we will identify the
map with its coordinate representation.

2 Linear differential equations

Let A ∈ End(Rn), we consider

ẋ(t) = Ax(t)

x(0) = x0 (2.1)

where x(t) ∈ Rn. Formally (2.1) has the solution

x(t) = eA t x0 (2.2)
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2.1 Exponential of matrices

Definition 2.1 (exponential of a matrix). Let A ∈ End(Rn), then

eA :=
∞∑
n=0

An

n!
(2.3)

Remark 2.1. The norm over End(Rn) defined by

‖ A ‖= sup
x∈Rn

{‖ Ax ‖ | ‖ x ‖= 1} ≤

 n∑
i j=1

A2
ij

1/2

(2.4)

verifies

‖ AB ‖≤‖ A ‖ ‖ B ‖ (2.5)

whence ||An|| ≤ ||A||n, thus the series defining eA is convergent. To prove the claim we can use the identity

〈ABx ,ABx〉
〈x ,x〉

=
〈ABx ,ABx〉
〈Bx ,Bx〉

〈Bx ,Bx〉
〈x ,x〉

(2.6)

Proposition 2.1. Let A ,B and T. Then

1. if B = TAT−1 i.e. if A and B are similar then exp(B) = T exp(A)T−1;

2. if [A ,B] then exp(A+ B) = exp(A) exp(B);

3. exp(−A) = (exp(A))−1

Proof.

1. If A and B are similar

exp(B) =
∞∑
n=0

(TAT−1)n

n!
=
∞∑
n=0

T
An

n!
T−1 (2.7)

2. If A and B commute

exp(A+ B) =
∞∑
n=0

(A+ B)n

n!
=

∞∑
n=0

∑
j+k=n

Aj

j!

Bk

k!
(2.8)

whence (omitting considerations about convergence of the series)

∞∑
n=0

∑
j+k=n

Aj

j!

Bk

k!
=
∞∑
n=0

n∑
j=0

Aj

j!

Bn−j

(n− j)!
=

∞∑
j=0

∞∑
n=j

Aj

j!

Bn−j

(n− j)!
=

∞∑
j=0

Aj

j!

∞∑
k=0

Bk

k!
(2.9)

3. Set B = −A and use the property 2 .
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Proposition 2.2. If v[a] ∈ Rn is an eigenvector of A with eigenvalue a is also an eigenvector of exp(A) with eigen-
value exp(a)

Proposition 2.3. Let A ∈ End(Rd)

d

d t
eAt = A eA t = eA t A (2.10)

Proof.

d

d t
eA t = lim

ε↓0

eA t
(
eA ε − 1

)
ε

= A eA t (2.11)

2.2 Existence and uniqueness of solutions

Existence and uniqueness follow from the more general Peano-Cauchy and icard-Lindelöf theorems. It is, however,
instructive to prove them in the linear case.

Theorem 2.1. The solution of (2.1) exists and is unique.

Proof.

• Existence follows from proposition 2.3.

• Uniqueness: the proof proceed per absurdum. Let us surmise that

z(t) = e−A tx(t) (2.12)

is not constant. Then, omitting the time dependence to neaten the notation,

ż = −A e−At x+ e−Atẋ = −A e−At x+ e−At Ax = 0 (2.13)

which contradicts the hypothesis.

2.3 Explicit form of the solution

Definition 2.2. The fundamental (principal) solution Ft of (2.1) is specified by the initial condition

F0 = 1 ⇒ Ft = eA t (2.14)

Proposition 2.4. Ft is a flow

The characteristic polynomial of A ∈ End(Rn) can be written as

P (A) = det(λ 1− A) =
m∏
j=1

(λ− aj)mj , (2.15)

where

• a1, . . . , am ∈ C are the m ≤ n distinct eigenvalues of A;
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• mj is the algebraic multiplicity of the eigenvalue aj .

By definition one has

m∑
j=1

mj = n (2.16)

The geometric multiplicity gj of aj is defined as the number of independent eigenvectors associated with aj , and
satisfies 1 ≥ gj ≥ mj .

Proposition 2.5. Any A ∈ End(Rn) can be decomposed as

A = S+ N, SN = NS. (2.17)

where the linear maps S, N are defined as follows.

• S is the semi-simple part. It can be written as

S =
m∑
j=1

aj Pj , (2.18)

where the Pj are projectors on the eigenspaces of A, i.e. Pj is the projector over the linear subspace

Aj = {v ∈ Rn | (A− aj 1)mjv = 0} (2.19)

The projectors {Pj}mj=1 satisfy the orthogonality relations

Pj Pk = δj k Pj
∑
j

Pj = 1 (2.20)

and

mj = dim(Pj Rn) (2.21)

• The nilpotent part N can be written as

N =
m∑
j=1

Nj , (2.22)

Each of the Nj’s satisfy the relations

N
mj

j = 0, Nj Nk = 0 for j 6= k, Pj Nk = Nk Pj = δjk Nj . (2.23)

In an appropriate basis, each Nj is block-diagonal, with gj blocks of the form
0 1 0

. . .
. . .

. . . 1
0 0

 (2.24)

In fact, Nj = 0 unless gj < mj . In other words,
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• if for each eigenvalue the geometric multiplicity coincides with the algebraic multiplicity we can write

A =

m∑
i=1

ai

mj∑
j=1

l[ai]j ⊗ r[ai]j (2.25)

with

A l[a1] = ai l[a1] & r[a1] A = ai r[a1] (2.26)

and

〈r[ai]j , l[al]k〉 = r∗[ai]j · l[al]k =
n∑
s=1

(r[ai]j )
∗
s

(
l[al]k

)
s
= δil δjk (2.27)

• if the geometric multiplicity is smaller than the algebraic multiplicity of the eigenvalue ai, we have for “left”
generalized eigenvectors the relations

A l[ai]1 = ai l[ai]1 + l[ai]2
A l[ai]2 = ai l[ai]2 + l[ai]3
· · ·
A l[ai]mj

= ai l[ai]mj
(2.28)

and similarly for “right” generalized eigenvectors in the dual space.

Proposition 2.6. The fundamental solution of (2.1) is amenable to the form

eA t =

m∑
j=1

eaj tPj

[
1+ Nj t+ · · ·+

N
mj−1
j tmj−1

(mj − 1)!

]
(2.29)

Proof. Whenever AB = BA we can use eA teB t = e(A+B)t. Thus

eA t = e(S+N) t = eS t eN t (2.30)

Recalling that

Pi Pj = Pj Pi = δijPi (2.31)

i.e. commutativity and idempotence of projectors we have

eaj Pj t =
∞∑
n=0

anj P
n
j t

n

n!
= 1+ Pj

∞∑
n=1

anj t
n

n!
= 1+ (eaj t − 1)Pj (2.32)

whence

eS t =
m∏
j=1

eaj Pj t =
m∏
j=1

{
1+ (eaj t − 1)Pj

}
= 1+

m∑
j=1

(eajt − 1)Pj =
m∑
j=1

eaj t Pj (2.33)

Similarly by

NiNj = NjNi (2.34)
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we also have

eN t =
m∏
j=1

eNj t = 1+
m∑
j=1

(eNj t − 1)

= 1+ Nj t+ · · ·+
N
mj−1
j tmj−1

(mj − 1)!
(2.35)

since eNj t contains only finitely many terms, being nilpotent.

The expression (2.29) shows that the long-time behaviour is determined by the real parts of the eigenvalues aj , while
the nilpotent terms, when present, influence the short time behaviour. This motivates the following terminology:

2.4 Asymptotic behavior

Definition 2.3. The subspace

Wu :=

{
y ∈ Rn | lim

t→−∞
eA ty = 0

}
P (u) :=

∑
j:<aj>0

Pj (2.36)

is referred to as the unstable subspace of the fixed point x? = 0

Definition 2.4. The subspace

Ws :=
{
y ∈ Rn | lim

t→∞
eA ty = 0

}
P (s) :=

∑
j:<aj<0

Pj (2.37)

is referred to as the stable subspace of the fixed point x? = 0

Definition 2.5. The subspace

W0 := P (c)Rn, P (c) :=
∑

j:<aj=0

Pj (2.38)

is referred to as the centre subspace of the fixed point x? = 0

The above defined subspaces are invariant subspaces of eAt, that is,

eA tWu ⊂ Wu

eA tWs ⊂ Ws

eA tW0 ⊂ W0 (2.39)

Definition 2.6. The fixed point is called

• a sink if Wu =W0 = {0},

• a source if Ws =W0 = {0},

• a hyperbolic point if W0 = {0},

• an elliptic point if Wu =Ws = {0}.
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3 Linear systems in two dimensions

Let n = 2, and let A be in Jordan canonical form, with detA 6= 0. Then we can distinguish between the following
behaviours, depending on the eigenvalues a1, a2 of A.

1. a1 6= a2

(a) If a1, a2 ∈ R, then

A =

[
a1 0
0 a2

]
(3.1)

and

eA t =

[
ea1t 0
0 ea2t

]
⇒

[
y1(t)
y2(t)

]
=

[
ea1ty1(0)
ea2ty2(0)

]
(3.2)

The orbits are curves of the form y2 = cy
a2/a1
1 . x? is called a node if a1a2 > 0, and a saddle if a1a2 < 0.

(b) If a1 = a†2 = a+ ıω ∈ C, then the real canonical form of A is

A =

[
a −ω
ω a

]
(3.3)

and

eA t = eat
[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]
⇒

[
y1(t)
y2(t)

]
=

[
eat { y1(0) cos(ωt)− y2(0) sin(ωt)}
eat { y1(0) sin(ωt) + y2(0) cos(ωt) }

]
(3.4)

x? is called a focus if a 6= 0, and a center if a = 0. The orbits are spirals or ellipses.

2. a1 = a2 := a

(a) If a has geometric multiplicity 2, then A = a 1 and eA t = eat 1; x? is called a degenerate node.

(b) If a has geometric multiplicity 1, then

A =

[
a 1
0 a

]
(3.5)

and

eA t = eat
[
1 t
0 1

]
⇒

[
y1(t)
y2(t)

]
=

[
eat { y1(0) + y2(0)t }

eaty2(0)

]
(3.6)

x? is called an improper node.

3.1 Classification of 2-dimensional linear systems

Consider A ∈ End(R2). The most general form is

A =

[
a b
c d

]
(3.7)

The characteristic polynomial is

P (A) = (λ− a)(λ− d)− bc = λ2 − λ(a+ d) + a d− b c (3.8)
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It can be rewritten in terms of invariants

P (A) = λ2 − λ trA+ detA (3.9)

The eigenvalues are

λ+ =
trA+

√
tr2A− 4 detA

2

λ− =
trA−

√
tr2A− 4 detA

2
(3.10)

one has

• (trA)2 > 4 , detA real eigenvalues

– detA < 0 the origin is a saddle

– detA > 0, trA > 0 the origin is a source

– detA > 0, trA < 0 the origin is a sink

• tr2A < 4 det A real eigenvalues

– detA > 0, trA > 0 the origin is a spiralling source

– det A > 0, trA < 0 the origin is a spiralling sink

detA

trA

detA = (trA)2

4

centres
spiralling
sinks

spiralling
sources sourcessinks

saddles

(3.11)

A centre is encountered for trA = 0

Appendices

A An extra: 2-d matrices in the Pauli basis

The Pauli matrices

σ0 = 12 , σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −ı
ı 0

]
, σ3 =

[
1 0
0 −1

]
(A-1)
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provide a basis for End(C2). Namely any matrix A in End(C2) can be written as

A =
3∑
i=0

aiσi (A-2)

Furthermore

[σi , σj ] = 2ıεijkσk

{σi , σj} := σi σj + σj σi = 2 12δij anticommutativity (A-3)

for εijk the totally anti-symmetric symbol

εijk = −εikj = εkij (A-4)

for example

σ1σ2 =

[
0 1
1 0

] [
0 −ı
ı 0

]
=

[
ı 0
0 −ı

]
σ2σ1 =

[
0 −ı
ı 0

] [
0 1
1 0

]
= −

[
ı 0
0 −ı

]
(A-5)

Proposition A.1. Using the above algebra

AB =

(
3∑
i=0

aiσi

) 3∑
j=0

bjσj

 =
(
a20 + a · b

)
σ0 +

3∑
i=1

[a0bi + b0ai + ı (a ∧ b)i]σi (A-6)

having defined

a :=

a1a2
a3

 (A-7)

Proof.(
3∑
i=0

aiσi

) 3∑
j=0

bjσj

 =

3∑
i=1

aibiσ
2
i +

3∑
i=1

∑
j 6=i

aibjσiσj = a · b+
3∑
i=1

∑
j 6=i

aibj
{σi , σj}+ [σi , σj ]

2
(A-8)

since

σiσj =
{σi , σj}+ [σi , σj ]

2
(A-9)

Use now the algebra of the Pauli matrices(
3∑
i=0

aiσi

) 3∑
j=0

bjσj

 =

3∑
i=1

∑
j 6=i

aibj
2ıεijkσk

2
= ı

3∑
i=1

(a ∧ b)iσi (A-10)
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A useful consequence is that

A2 =
(
a20 + a2

)
σ0 + 2

3∑
i=1

a0aiσi

A3 =
(
a20 + 3a2

)
a0σ0 +

(
3 a20 + a2

) 3∑
i=1

aiσi (A-11)

Proposition A.2.

An =

int{n
2 }∑

k=0

(
n
2k

)
an−2k0 a2kσ0 +

int{n+1
2 }−1∑

k=0

(
n

2k + 1

)
an−2k−10 a2k

 3∑
i=1

aiσi (A-12)

Proof.

An+1 =

a0
int{n

2 }∑
k=0

(
n
2k

)
an−2k0 a2k

+ a2

int{n+1
2 }−1∑

k=0

(
n

2k + 1

)
an−2k−10 a2k


σ0

+

a0
int{n+1

2 }−1∑
k=0

(
n

2k + 1

)
an−2k−10 a2k

+

int{n
2 }∑

k=0

(
n
2k

)
an−2k0 a2k

 3∑
i=1

aiσi (A-13)

Observe now that
int{n+1

2 }−1∑
k=0

(
n

2k + 1

)
an−2k−10 a2k+2 =

int{n+1
2 }∑

k=1

(
n

2k + 1

)
an+1−2k
0 a2k (A-14)

and
int{n

2 }∑
k=0

(
n
2k

)
an+1−2k
0 a2k +

int{n+1
2 }∑

k=1

(
n

2k + 1

)
an+1−2k
0 a2k

= an0 +

int{n+1
2 }∑

k=1

[(
n
2k

)
+

(
n

2k − 1

)]
an+1−2k
0 a2k

=

int{n+1
2 }∑

k=0

(
n+ 1
2k

)
an+1−2k
0 a2k (A-15)

analogously for the second term.

The exponential of A ∈ C× C can be written as

eA =

∞∑
n=0

1

n!

int{n
2 }∑

k=0

(
n
2k

)
an−2k0 a2kσ0 +

int{n+1
2 }−1∑

k=0

(
n

2k + 1

)
an−2k−10 a2k

 3∑
i=1

aiσi


=

∞∑
n=0

1

(2n)!

[
n∑
k=0

(
2n
2k

)
a
2(n−k)
0 a2kσ0 +

(
n−1∑
k=0

(
2n

2k + 1

)
a2n−2k−10 a2k

)
3∑
i=1

aiσi

]

+

∞∑
n=0

1

(2n+ 1)!

[
n∑
k=0

(
2n+ 1
2k

)
a2n−2k+1
0 a2kσ0 +

(
n∑
k=0

(
2n+ 1
2k + 1

)
a2n−2k0 a2k

)
3∑
i=1

aiσi

]
(A-16)
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Observing that

n∑
k=0

(
2n
2k

)
a
2(n−k)
0 a2k =

1

2

[(
a0 +

√
a2
)2n

+
(
a0 −

√
a2
)2n]

n∑
k=0

(
2n+ 1
2k

)
a2n−2k+1
0 a2k =

1

2

[(
a0 +

√
a2
)2n+1

+
(
a0 −

√
a2
)2n+1

]
(A-17)

and

n−1∑
k=0

(
2n

2k + 1

)
a2n−2k−10 a2k =

1

2
√
a2

[(
a0 +

√
a2
)2n
−
(
a0 −

√
a2
)2n]

n∑
k=0

(
2n+ 1
2k + 1

)
a2n−2k0 a2k =

1

2
√
a2

[(
a0 +

√
a2
)2n+1

−
(
a0 −

√
a2
)2n+1

]
(A-18)

Which finally yields

eA =
ea0+

√
a2 + ea0−

√
a2

2
σ0 +

ea0+
√
a2 − ea0−

√
a2

2
√
a2

3∑
i=1

aiσi (A-19)

In particular if

trA = 0 ⇒ a0 = 0 (A-20)

then

eA = cosh
(√

a2
)
σ0 +

sinh
(√

a2
)

√
a2

3∑
i=1

aiσi (A-21)
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