Lecture 02: Notes on linear systems

Introduction

The expounded material can be found in
e ch. 2 of [2]
e ch. 2 of [1]

1 Some terminology and mathematical notation for linear maps

Let V4, V5 two vector spaces.
Definition 1.1. The map
A:V;— Vo (1.1)
is linear if
e forany x;,xo € Vi, is additive

A(a:l + mg) = Ax; + Axy

o foranyc € Candanyx € V

Acx = cAx (1.2)

By definition a linear map preserves the algebraic structure of its domain, a vector space, as its image is still a
vector space. It is therefore an homomorphism. The collection of linear maps between the two vector spaces V1, Vg
can be denoted as Hom(V, Vy). In particular, if V; = Vo = V, we can write Hom(V, V) = End(V) and talk of the
set of endomorphisms of V. If A € Hom(Vy,Vs) is invertible we can think of it as an element of GL(V7,V5) the
general linear group. Finally, in any basis of V. = R”, A is a matrix i.e. A € R"”. In what follow we will identify the
map with its coordinate representation.

2 Linear differential equations

Let A € End(R"™), we consider

&(t) = Ax(t)
x(0) = xo (2.1)
where x(t) € R"™. Formally (2.1) has the solution
x(t) = M xg (2.2)



2.1 Exponential of matrices

Definition 2.1 (exponential of a matrix). Let A € End(R"), then

[e.e]
A’Vl
6A = 7'
— nl
Remark 2.1. The norm over End(R™) defined by
. 1/2
IAl=sup {[[Az || | [z l=1}<| > A}
:Z‘}GR” ii—1
ij
verifies
IAB <[ A]llBI

whence | A”|| < |A||", thus the series defining e is convergent. To prove the claim we can use the identity

(ABxz,ABxz) (ABx,ABzx) (Bx,Bzx)
(x,x) ~ (Bx,Bx) (x,x)

Proposition 2.1. Let A, B and T. Then
1. ifB=TAT !ie. if AandB are similar then exp(B) = Texp(A)T~1;
2. if [A,B] then exp(A 4+ B) = exp(A) exp(B);
3. exp(—A) = (exp(A))~!
Proof.
1. If A and B are similar
exp(B)—nZ%(TAT ZTn|T !

2. If A and B commute

(A B AJ BF
exp(A + B) = Z + ZZ S

n=0 n=0j+k=n

whence (omitting considerations about convergence of the series)

> 5 zz” e

n=0 j+k=n =037 —0 /
zz‘“ - i
j=0n=y j= 0

3. Set B = —A and use the property 2.

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

2.9



Proposition 2.2. If v, € R" is an eigenvector of A with eigenvalue a is also an eigenvector of exp(A) with eigen-
value exp(a)

Proposition 2.3. Let A € End(R%)

d
EeAt =AMt =AA (2.10)
Proof.
At (,Ae _ 1
d v _ gy (e ) _ pert 2.11)
dt el0 IS
O

2.2 Existence and uniqueness of solutions

Existence and uniqueness follow from the more general Peano-Cauchy and icard-Lindelof theorems. It is, however,
instructive to prove them in the linear case.

Theorem 2.1. The solution of (2.1) exists and is unique.
Proof.
e Existence follows from proposition 2.3.
e Uniqueness: the proof proceed per absurdum. Let us surmise that
z(t) = e Ala(t) (2.12)
is not constant. Then, omitting the time dependence to neaten the notation,
2=-AePMrteMi=—-AeMz+eMAz=0 (2.13)

which contradicts the hypothesis.

O
2.3 Explicit form of the solution
Definition 2.2. The fundamental (principal) solution F; of (2.1) is specified by the initial condition
Fo=1 = Fp = el! (2.14)
Proposition 2.4. F; is a flow
The characteristic polynomial of A € End(R"™) can be written as
m
P(A) =det(A1—A) = JJ(A —a))™, (2.15)
j=1
where
® ay,...,ay € Care the m < n distinct eigenvalues of A;



e m; is the algebraic multiplicity of the eigenvalue a;.

By definition one has

S my=n (2.16)
j=1

The geometric multiplicity g; of a; is defined as the number of independent eigenvectors associated with a;, and
satisfies 1 > g; > m;.

Proposition 2.5. Any A € End(R") can be decomposed as
A=S+N, SN =NS. (2.17)
where the linear maps S, N are defined as follows.

o S is the semi-simple part. It can be written as
m
S:Zaj P, (2.18)
j=1

where the P are projectors on the eigenspaces of A, i.e. P; is the projector over the linear subspace
Aj={v e R"| (A—qa;1)™v =0} (2.19)

The projectors {P; };":1 satisfy the orthogonality relations
PiPe=0;sP; Y Pj=1 (2.20)
J
and
m; = dim(P; R") 2.21)

o The nilpotent part N can be written as

N=> N (2.22)
j=1
Each of the N;’s satisfy the relations
N7 =0, N;N, =0 forj#k, P;Ni = NiP; =& N;. (2.23)

In an appropriate basis, each N; is block-diagonal, with g; blocks of the form

0 1 0
(2.24)

1

0 0

In fact, N; = O unless g; < m;. In other words,



e if for each eigenvalue the geometric multiplicity coincides with the algebraic multiplicity we can write

A= i @i i bady ® Tla), (2.25)
i=1 =1
with
Al = ailf) & Tla] A = Qi T[qy (2.26)
and
(lady > o) = Tlad, Yo = Zi;(fr[az‘]j): (Yai) = 9z G 2.27)

o if the geometric multiplicity is smaller than the algebraic multiplicity of the eigenvalue a;, we have for “left”
generalized eigenvectors the relations

Aljay, = ilja, +lag,

Alla, = @ilja;)y +1ayy

Alla)m, = i), (2.28)
and similarly for “right” generalized eigenvectors in the dual space.

Proposition 2.6. The fundamental solution of (2.1) is amenable to the form

m mjfl tmj_l
eAt:ZeajtPj 1+th+...+ﬁ (2.29)
i=1 T

Proof: Whenever AB = B A we can use e”feBt = ¢(AtB)t Thyg
Al (SENE _ St Nt (2.30)
Recalling that
P;P; =P; P; = 0;;P; (2.31)

i.e. commutativity and idempotence of projectors we have

> a? P " > al t"
Pt 3l o ) J _ it .
D e LD D e R 232
n=0 n=1
whence
m m m m
St=TJe P =T[{1+ (%" —1)P;} =1+ (%" —~1)P; =) %P, (2.33)
j=1 j=1 j=1 j=1
Similarly by
NN, = N;N; (2.34)



we also have

m
eNt:Heth:1+ (eth_l)
7j=1

j=1

<
Il

=14 Njt+--+

N

since e"i ! contains only finitely many terms, being nilpotent.

(2.35)

O

The expression (2.29) shows that the long-time behaviour is determined by the real parts of the eigenvalues a;, while
the nilpotent terms, when present, influence the short time behaviour. This motivates the following terminology:

2.4 Asymptotic behavior

Definition 2.3. The subspace

W= {yer) i Ay=ol 0= S

is referred to as the unstable subspace of the fixed point x* = (

Definition 2.4. The subspace

W = {y e R"| tliglo Aty = 0} P) .= Z P;

is referred to as the stable subspace of the fixed point x* =

Definition 2.5. The subspace

Wo:=POR", P .= Y P

is referred to as the centre subspace of the fixed point t* = 0

The above defined subspaces are invariant subspaces of e”?, that is,

eAth Cc Wy
AW, c W
eAtW() c Wy

Definition 2.6. The fixed point is called
o asink if W, = Wy = {0},
e asource if Wy = Wy = {0},
e a hyperbolic point if Wy = {0},
e an elliptic point if W, = Wy = {0}.

j:Ra; >0

(2.36)

(2.37)

(2.38)

(2.39)



3 Linear systems in two dimensions

Let n = 2, and let A be in Jordan canonical form, with det A # 0. Then we can distinguish between the following
behaviours, depending on the eigenvalues a;, as of A.

1. al #ag

(a) If a1, as € R, then

A= [“1 0] (3.1)

0 as
and
At [emt 0 yi(t)] _ [e™*y1(0)
(& - |: 0 €a2t:| = |:y2(t):| - |:ea2ty2(0):| (32)

/

The orbits are curves of the form y = cy‘f2 “ 2* is called a node if ajas > 0, and a saddle if ayas < 0.

(b) If a1 = ag = a + w € C, then the real canonical form of A is

A= [“ _“’} (3.3)

w a

and

At _ at cos(wt) —sin(wt) ()] e {y1(0) cos(wt) — y2(0) sin(wt)}
© = sin(wt)  cos(wt) ] = [yg(t)} - [e“t {y1(0) sin(wt) + y2(0) cos(wt) } (3-4)

a* is called a focus if a # 0, and a center if a = 0. The orbits are spirals or ellipses.
2.a1=a9:=a

(a) If a has geometric multiplicity 2, then A = a1 and et = ™ 1; 2* is called a degenerate node.
g phcity

(b) If a has geometric multiplicity 1, then

a 1
A= [0 a] (3.5)
and
At _ at |1t ()| _ e {y1(0) +y2(0)t }
© e [0 1] ~ [312(15) B e®y2(0) (3-6)
x* is called an improper node.
3.1 Classification of 2-dimensional linear systems
Consider A € End(R?). The most general form is
a b
A= [c d] 3.7)
The characteristic polynomial is
PA)=A—a)A—d)—bc=X - Xa+d)+ad—bc (3.8)



It can be rewritten in terms of invariants

P(A) = X2 — M trA + det A (3.9)

The eigenvalues are

_ trA+ Vir’A —4det A
B 2
A — Vtr?A — 4det A
_ tr tr det (3.10)

2

Ay

Ao

one has
e (trA)? > 4, det A real eigenvalues

— det A < 0 the origin is a saddle
— det A > 0, tr A > 0 the origin is a source
— det A > 0,tr A < 0 the origin is a sink

e tr’A < 4det A real eigenvalues

— detA > 0,tr A > 0 the origin is a spiralling source
— det A > 0, trA < 0 the origin is a spiralling sink

\‘ det A .’f

centres|

spiralling spiralling
sinks sources

o

B trA
A centre is encountered for trA = 0
Appendices
A An extra: 2-d matrices in the Pauli basis
The Pauli matrices
0 1 0 — 1 0
oo =1z, 01—[1 0]7 02—[2 0}’ 03—[0 _1] (A-1)



provide a basis for End(C?). Namely any matrix A in End(C?) can be written as

3
A= E a;0;
=0

Furthermore

[0i,0;] = 218j5,0%

{0i,0j} =0i0j+0j0; =210 anticommutativity
for ;1 the totally anti-symmetric symbol

Eijk = —Eikj = E€kij

o=l o[ 5]-1 2
wn=[ 0= )

Proposition A.1. Using the above algebra

for example

3 3 3
= (Zaidi> ijO‘j = (ag—{—ab) 00+Z[a0bi+boai+z(a/\b)i]a
i=0 j=0 i=1
having defined
a
a = |a9
as
Proof.

3 3
<Zai0i> ijaj Zalbo' +Zzalb o) =a- b+zz b {Uzan}+[UzaU]]
i=0 =0

=1 j#i =1 j#i
since

{Uz ) Uj} + [Uz ) Uj}
2

0,0j =

Use now the algebra of the Pauli matrices

3 3 3
<Z aiai> Z bjo; Z Z a;b; QZEZ]ka Z (a \b)io;
=0 i=1

=0 i=1 j#i

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-T)

(A-8)

(A-9)

(A-10)



A useful consequence is that

3
A% = (G(Q) + az) o9+ 2 Zaoaiai

i=1
3
A% = (af + 30%) apoo + (3af + a) D aio; (A-11)
i=1
Proposition A.2.
int{%} int{"TH}fl
n_ n 2k 2k n 2k—1 2k
=y (2k> O (%H) - Zazal (A12)
k=0 k=0
Proof.

{3} {241} 1
n+l n n—2k 2k 2 n n—2k—1 2k
A = Jao Z <2k>a0 a +a Z (2k+1> ag a o0
k=0 k=0
[ mt{"TH}—l mt{ } 3
+ ag (%71 1> n—2k—1,2k | Z ( ) n—2k 2k Zami (A-13)
k=0 i=1
Observe now that
nt{ 21} 1 int{ =52 }
n n—2k—1,2k+2 __ n n+1-2k 2k _
S () e = S () e a1
k=0 k=1
and
int{%} mt{";"1 N
n+1-2k 2k n+1-2k 2k
S ()t et S (ot
k=0 k=1
int{ "5+ }
o ) e
k=1
{1
_ n+1\ 12k ok
= < ok )ao a (A-15)
k=0
analogously for the second term. O

The exponential of A € C x C can be written as
1 {52
A _ L n n—2k 2k
e = y kzo (2 k:> ag a“vog + kzo

n n—1
2n\ 2(n—k) 9 2n—2k—1 2k Z
g <2k:> ag a"og + ( E <2k:—|— 1> ) aml]

=0
n
2n +1 _ 2n+1 _
3 () et (32 (0 ) e ) S
k=0 =1

10

}-1 " 3
(/s y) o | S
=1

(A-16)

_|_
gk
S
S
+H
=




Observing that

M:

<2n> a(Z)(n—k)an = % [(ao + \/a»2> - + (ao - \/a>2) 2n]

2k
k=0
n
1 2n41 2n41
(27’122- 1) a3n72k+la2k — 5 |:(a0 4 \/(?) n n (ao _ @) n :| (A_17)
k=0
and
nil( 2n > m—2k—1 2k 1 |:< \/—22n ﬁQn
an Trat™t = a—l—a)—(a—a)]
e \2k+1) 70 9va2 [\ 0
n
2n—|—1> n—2k 2k 1 [( )7 ant
a2n2kg2h — a0+\/c7) . (ao—\/cT?) (A-18)
— <2k +1)70 2va2
Which finally yields
eag-l-\/tTQ + eao—\/LTQ eao—&-\/cT2 _ eao—\/ai2 3
= 0 A-19
e B oo + 2\/(; ;azaz ( )
In particular if
trA=0 = ag =0 (A-20)
then
sinh (\/a>2> 3
A
e = cosh (\/672) oo + a;0; (A-21)
0 m Zzl (Al
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