Lecture 02 : Notes on linear systems

Introduction

The expounded material can be found in

- ch. 2 of [2]
- ch. 2 of [1]

1 Some terminology and mathematical notation for linear maps

Let $\mathbb{V}_{1}, \mathbb{V}_{2}$ two vector spaces.
Definition 1.1. The map

$$
\begin{equation*}
A: \mathbb{V}_{1} \mapsto \mathbb{V}_{2} \tag{1.1}
\end{equation*}
$$

is linear if

- for any $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in V_{1}$, is additive

$$
\mathrm{A}\left(\boldsymbol{x}_{1}+\boldsymbol{x}_{2}\right)=\mathrm{A} \boldsymbol{x}_{1}+\mathrm{A} \boldsymbol{x}_{2}
$$

- for any $c \in \mathbb{C}$ and any $\boldsymbol{x} \in V_{1}$

$$
\begin{equation*}
\mathrm{A} c \boldsymbol{x}=c \mathrm{~A} \boldsymbol{x} \tag{1.2}
\end{equation*}
$$

By definition a linear map preserves the algebraic structure of its domain, a vector space, as its image is still a vector space. It is therefore an homomorphism. The collection of linear maps between the two vector spaces $\mathbb{V}_{1}, \mathbb{V}_{2}$ can be denoted as $\operatorname{Hom}\left(\mathbb{V}_{1}, \mathbb{V}_{2}\right)$. In particular, if $\mathbb{V}_{1}=\mathbb{V}_{2}=\mathbb{V}$, we can write $\operatorname{Hom}(\mathbb{V}, \mathbb{V})=\operatorname{End}(\mathbb{V})$ and talk of the set of endomorphisms of \mathbb{V}. If $A \in \operatorname{Hom}\left(\mathbb{V}_{1}, \mathbb{V}_{2}\right)$ is invertible we can think of it as an element of $G L\left(\mathbb{V}_{1}, \mathbb{V}_{2}\right)$ the general linear group. Finally, in any basis of $\mathbb{V}=\mathbb{R}^{n}, \mathrm{~A}$ is a matrix i.e. $\mathrm{A} \in \mathbb{R}^{n^{2}}$. In what follow we will identify the map with its coordinate representation.

2 Linear differential equations

Let $A \in \operatorname{End}\left(\mathbb{R}^{n}\right)$, we consider

$$
\begin{align*}
& \dot{\boldsymbol{x}}(t)=\mathrm{A} \boldsymbol{x}(t) \\
& \boldsymbol{x}(0)=\boldsymbol{x}_{0} \tag{2.1}
\end{align*}
$$

where $\boldsymbol{x}(t) \in \mathbb{R}^{n}$. Formally (2.1) has the solution

$$
\begin{equation*}
\boldsymbol{x}(t)=e^{\mathrm{A} t} \boldsymbol{x}_{0} \tag{2.2}
\end{equation*}
$$

2.1 Exponential of matrices

Definition 2.1 (exponential of a matrix). Let $A \in \operatorname{End}\left(\mathbb{R}^{n}\right)$, then

$$
\begin{equation*}
e^{\mathrm{A}}:=\sum_{n=0}^{\infty} \frac{\mathrm{A}^{n}}{n!} \tag{2.3}
\end{equation*}
$$

Remark 2.1. The norm over $\operatorname{End}\left(\mathbb{R}^{n}\right)$ defined by

$$
\begin{equation*}
\|\mathrm{A}\|=\sup _{\boldsymbol{x} \in \mathbb{R}^{n}}\{\|\mathrm{~A} \boldsymbol{x}\| \mid\|\boldsymbol{x}\|=1\} \leq\left(\sum_{i j=1}^{n} \mathrm{~A}_{i j}^{2}\right)^{1 / 2} \tag{2.4}
\end{equation*}
$$

verifies

$$
\begin{equation*}
\|\mathrm{AB}\| \leq\|\mathrm{A}\|\|\mathrm{B}\| \tag{2.5}
\end{equation*}
$$

whence $\left\|A^{n}\right\| \leq\|A\|^{n}$, thus the series defining e^{A} is convergent. To prove the claim we can use the identity

$$
\begin{equation*}
\frac{\langle\mathrm{AB} \boldsymbol{x}, \mathrm{AB} \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}=\frac{\langle\mathrm{AB} \boldsymbol{x}, \mathrm{~A} \mathrm{~B} \boldsymbol{x}\rangle}{\langle\mathrm{B} \boldsymbol{x}, \mathrm{~B} \boldsymbol{x}\rangle} \frac{\langle\mathrm{B} \boldsymbol{x}, \mathrm{~B} \boldsymbol{x}\rangle}{\langle\boldsymbol{x}, \boldsymbol{x}\rangle} \tag{2.6}
\end{equation*}
$$

Proposition 2.1. Let A, B and T . Then

1. if $\mathrm{B}=\mathrm{TA} \mathrm{T}^{-1}$ i.e. if A and B are similar then $\exp (\mathrm{B})=\mathrm{T} \exp (\mathrm{A}) \mathrm{T}^{-1}$;
2. if $[A, B]$ then $\exp (A+B)=\exp (A) \exp (B)$;
3. $\exp (-A)=(\exp (A))^{-1}$

Proof.

1. If A and B are similar

$$
\begin{equation*}
\exp (\mathrm{B})=\sum_{n=0}^{\infty} \frac{\left(\mathrm{TAT}^{-1}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \mathrm{T} \frac{\mathrm{~A}^{n}}{n!} \mathrm{T}^{-1} \tag{2.7}
\end{equation*}
$$

2. If A and B commute

$$
\begin{equation*}
\exp (\mathrm{A}+\mathrm{B})=\sum_{n=0}^{\infty} \frac{(\mathrm{A}+\mathrm{B})^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{j+k=n} \frac{\mathrm{~A}^{j}}{j!} \frac{\mathrm{B}^{k}}{k!} \tag{2.8}
\end{equation*}
$$

whence (omitting considerations about convergence of the series)

$$
\begin{align*}
& \sum_{n=0}^{\infty} \sum_{j+k=n} \frac{\mathrm{~A}^{j}}{j!} \frac{\mathrm{B}^{k}}{k!}=\sum_{n=0}^{\infty} \sum_{j=0}^{n} \frac{\mathrm{~A}^{j}}{j!} \frac{\mathrm{B}^{n-j}}{(n-j)!}= \\
& \sum_{j=0}^{\infty} \sum_{n=j}^{\infty} \frac{\mathrm{A}^{j}}{j!} \frac{\mathrm{B}^{n-j}}{(n-j)!}=\sum_{j=0}^{\infty} \frac{\mathrm{A}^{j}}{j!} \sum_{k=0}^{\infty} \frac{\mathrm{B}^{k}}{k!} \tag{2.9}
\end{align*}
$$

3. Set $B=-A$ and use the property 2 .

Proposition 2.2. If $\boldsymbol{v}_{[a]} \in \mathbb{R}^{n}$ is an eigenvector of A with eigenvalue a is also an eigenvector of $\exp (\mathrm{A})$ with eigenvalue $\exp (a)$

Proposition 2.3. Let $\mathrm{A} \in \operatorname{End}\left(\mathbb{R}^{d}\right)$

$$
\begin{equation*}
\frac{d}{d t} e^{\mathbf{A} t}=\mathrm{A} e^{\mathbf{A} t}=e^{\mathbf{A} t} \mathrm{~A} \tag{2.10}
\end{equation*}
$$

Proof.

$$
\begin{equation*}
\frac{d}{d t} e^{\mathbf{A} t}=\lim _{\epsilon \downarrow 0} \frac{e^{\mathbf{A} t}\left(e^{\mathbf{A} \varepsilon}-1\right)}{\varepsilon}=\mathbf{A} e^{\mathbf{A} t} \tag{2.11}
\end{equation*}
$$

2.2 Existence and uniqueness of solutions

Existence and uniqueness follow from the more general Peano-Cauchy and icard-Lindelöf theorems. It is, however, instructive to prove them in the linear case.

Theorem 2.1. The solution of (2.1) exists and is unique.
Proof.

- Existence follows from proposition 2.3.
- Uniqueness: the proof proceed per absurdum. Let us surmise that

$$
\begin{equation*}
\boldsymbol{z}(t)=e^{-\mathrm{A} t} \boldsymbol{x}(t) \tag{2.12}
\end{equation*}
$$

is not constant. Then, omitting the time dependence to neaten the notation,

$$
\begin{equation*}
\dot{\boldsymbol{z}}=-\mathrm{A} e^{-\mathrm{A} t} \boldsymbol{x}+e^{-\mathrm{A} t} \dot{\boldsymbol{x}}=-\mathrm{A} e^{-\mathrm{A} t} \boldsymbol{x}+e^{-\mathrm{A} t} \mathrm{~A} \boldsymbol{x}=0 \tag{2.13}
\end{equation*}
$$

which contradicts the hypothesis.

2.3 Explicit form of the solution

Definition 2.2. The fundamental (principal) solution F_{t} of (2.1) is specified by the initial condition

$$
\begin{equation*}
\mathrm{F}_{0}=1 \quad \Rightarrow \quad \mathrm{~F}_{t}=e^{\mathrm{A} t} \tag{2.14}
\end{equation*}
$$

Proposition 2.4. F_{t} is a flow
The characteristic polynomial of $\mathrm{A} \in \operatorname{End}\left(\mathbb{R}^{n}\right)$ can be written as

$$
\begin{equation*}
P(\mathrm{~A})=\operatorname{det}(\lambda 1-\mathrm{A})=\prod_{j=1}^{m}\left(\lambda-a_{j}\right)^{m_{j}}, \tag{2.15}
\end{equation*}
$$

where

- $a_{1}, \ldots, a_{m} \in \mathbb{C}$ are the $m \leq n$ distinct eigenvalues of A ;
- m_{j} is the algebraic multiplicity of the eigenvalue a_{j}.

By definition one has

$$
\begin{equation*}
\sum_{j=1}^{m} m_{j}=n \tag{2.16}
\end{equation*}
$$

The geometric multiplicity g_{j} of a_{j} is defined as the number of independent eigenvectors associated with a_{j}, and satisfies $1 \geq g_{j} \geq m_{j}$.

Proposition 2.5. Any $\mathrm{A} \in \operatorname{End}\left(\mathbb{R}^{n}\right)$ can be decomposed as

$$
\begin{equation*}
A=S+N, \quad S N=N S . \tag{2.17}
\end{equation*}
$$

where the linear maps S, N are defined as follows.

- S is the semi-simple part. It can be written as

$$
\begin{equation*}
\mathbf{S}=\sum_{j=1}^{m} a_{j} \mathrm{P}_{j}, \tag{2.18}
\end{equation*}
$$

where the P_{j} are projectors on the eigenspaces of A , i.e. P_{j} is the projector over the linear subspace

$$
\begin{equation*}
\mathcal{A}_{j}=\left\{\boldsymbol{v} \in \mathbb{R}^{n} \mid\left(\mathrm{A}-a_{j} 1\right)^{m_{j}} \boldsymbol{v}=0\right\} \tag{2.19}
\end{equation*}
$$

The projectors $\left\{\mathrm{P}_{j}\right\}_{j=1}^{m}$ satisfy the orthogonality relations

$$
\begin{equation*}
\mathrm{P}_{j} \mathrm{P}_{k}=\delta_{j k} \mathrm{P}_{j} \quad \sum_{j} \mathrm{P}_{j}=1 \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{j}=\operatorname{dim}\left(\mathrm{P}_{j} \mathbb{R}^{n}\right) \tag{2.21}
\end{equation*}
$$

- The nilpotent part N can be written as

$$
\begin{equation*}
\mathbf{N}=\sum_{j=1}^{m} \mathbf{N}_{j}, \tag{2.22}
\end{equation*}
$$

Each of the N_{j} 's satisfy the relations

$$
\begin{equation*}
\mathrm{N}_{j}^{m_{j}}=0, \quad \mathrm{~N}_{j} \mathrm{~N}_{k}=0 \quad \text { for } j \neq k, \quad \mathrm{P}_{j} \mathrm{~N}_{k}=\mathrm{N}_{k} \mathrm{P}_{j}=\delta_{j k} \mathrm{~N}_{j} . \tag{2.23}
\end{equation*}
$$

In an appropriate basis, each N_{j} is block-diagonal, with g_{j} blocks of the form

$$
\left[\begin{array}{cccc}
0 & 1 & & 0 \tag{2.24}\\
& \ddots & \ddots & \\
& & \ddots & 1 \\
0 & & & 0
\end{array}\right]
$$

In fact, $\mathrm{N}_{j}=0$ unless $g_{j}<m_{j}$. In other words,

- if for each eigenvalue the geometric multiplicity coincides with the algebraic multiplicity we can write

$$
\begin{equation*}
\mathrm{A}=\sum_{i=1}^{m} a_{i} \sum_{j=1}^{m_{j}} \boldsymbol{l}_{\left[a_{i}\right]_{j}} \otimes \boldsymbol{r}_{\left[a_{i}\right]_{j}} \tag{2.25}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{A} \boldsymbol{l}_{\left[a_{1}\right]}=a_{i} \boldsymbol{l}_{\left[a_{1}\right]} \quad \& \quad \boldsymbol{r}_{\left[a_{1}\right]} \mathrm{A}=a_{i} \boldsymbol{r}_{\left[a_{1}\right]} \tag{2.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\boldsymbol{r}_{\left[a_{i}\right]_{j}}, \boldsymbol{l}_{\left[a_{l}\right]_{k}}\right\rangle=\boldsymbol{r}_{\left[a_{i}\right]_{j}}^{*} \cdot \boldsymbol{l}_{\left[a_{l}\right]_{k}}=\sum_{s=1}^{n}\left(\boldsymbol{r}_{\left[a_{i}\right]_{j}}\right)_{s}^{*}\left(\boldsymbol{l}_{\left[a_{l}\right]_{k}}\right)_{s}=\delta_{i l} \delta_{j k} \tag{2.27}
\end{equation*}
$$

- if the geometric multiplicity is smaller than the algebraic multiplicity of the eigenvalue a_{i}, we have for "left" generalized eigenvectors the relations

$$
\begin{align*}
& \mathrm{A} \boldsymbol{l}_{\left[a_{i}\right]_{1}}=a_{i} \boldsymbol{l}_{\left[a_{i}\right]_{1}}+\boldsymbol{l}_{\left[a_{i}\right]_{2}} \\
& \mathbf{A} \boldsymbol{l}_{\left[a_{i}\right]_{2}}=a_{i} \boldsymbol{l}_{\left[a_{i}\right]_{2}}+\boldsymbol{l}_{\left[a_{i}\right]_{3}} \\
& \ldots \tag{2.28}\\
& \mathbf{A} \boldsymbol{l}_{\left[a_{i}\right]_{m_{j}}}=a_{i} \boldsymbol{l}_{\left[a_{i}\right]_{m_{j}}}
\end{align*}
$$

and similarly for "right" generalized eigenvectors in the dual space.
Proposition 2.6. The fundamental solution of (2.1) is amenable to the form

$$
\begin{equation*}
e^{\mathrm{A} t}=\sum_{j=1}^{m} e^{a_{j} t} \mathrm{P}_{j}\left[1+\mathrm{N}_{j} t+\cdots+\frac{\mathrm{N}_{j}^{m_{j}-1} t^{m_{j}-1}}{\left(m_{j}-1\right)!}\right] \tag{2.29}
\end{equation*}
$$

Proof. Whenever $\mathrm{A} \mathrm{B}=\mathrm{B} A$ we can use $e^{\mathrm{A} t} e^{\mathrm{B} t}=e^{(\mathrm{A}+\mathrm{B}) t}$. Thus

$$
\begin{equation*}
e^{\mathrm{A} t}=e^{(\mathrm{S}+\mathrm{N}) t}=e^{\mathrm{S} t} e^{\mathrm{N} t} \tag{2.30}
\end{equation*}
$$

Recalling that

$$
\begin{equation*}
\mathrm{P}_{i} \mathrm{P}_{j}=\mathrm{P}_{j} \mathrm{P}_{i}=\delta_{i j} \mathrm{P}_{i} \tag{2.31}
\end{equation*}
$$

i.e. commutativity and idempotence of projectors we have

$$
\begin{equation*}
e^{a_{j} \mathrm{P}_{j} t}=\sum_{n=0}^{\infty} \frac{a_{j}^{n} \mathrm{P}_{j}^{n} t^{n}}{n!}=1+\mathrm{P}_{j} \sum_{n=1}^{\infty} \frac{a_{j}^{n} t^{n}}{n!}=1+\left(e^{a_{j} t}-1\right) \mathrm{P}_{j} \tag{2.32}
\end{equation*}
$$

whence

$$
\begin{equation*}
e^{\mathrm{S} t}=\prod_{j=1}^{m} e^{a_{j} \mathrm{P}_{j} t}=\prod_{j=1}^{m}\left\{1+\left(e^{a_{j} t}-1\right) \mathrm{P}_{j}\right\}=1+\sum_{j=1}^{m}\left(e^{a_{j} t}-1\right) \mathrm{P}_{j}=\sum_{j=1}^{m} e^{a_{j} t} \mathrm{P}_{j} \tag{2.33}
\end{equation*}
$$

Similarly by

$$
\begin{equation*}
\mathrm{N}_{i} \mathrm{~N}_{j}=\mathrm{N}_{j} \mathrm{~N}_{i} \tag{2.34}
\end{equation*}
$$

we also have

$$
\begin{align*}
e^{\mathrm{N} t} & =\prod_{j=1}^{m} e^{\mathrm{N}_{j} t}=1+\sum_{j=1}^{m}\left(e^{\mathrm{N}_{j} t}-1\right) \\
& =1+\mathrm{N}_{j} t+\cdots+\frac{\mathrm{N}_{j}^{m_{j}-1} t^{m_{j}-1}}{\left(m_{j}-1\right)!} \tag{2.35}
\end{align*}
$$

since $e^{\mathrm{N}_{j} t}$ contains only finitely many terms, being nilpotent.
The expression (2.29) shows that the long-time behaviour is determined by the real parts of the eigenvalues a_{j}, while the nilpotent terms, when present, influence the short time behaviour. This motivates the following terminology:

2.4 Asymptotic behavior

Definition 2.3. The subspace

$$
\begin{equation*}
W_{u}:=\left\{y \in \mathbb{R}^{n} \mid \lim _{t \rightarrow-\infty} e^{\mathrm{A} t} y=0\right\} \quad P^{(u)}:=\sum_{j: \Re a_{j}>0} P_{j} \tag{2.36}
\end{equation*}
$$

is referred to as the unstable subspace of the fixed point $x^{\star}=0$
Definition 2.4. The subspace

$$
\begin{equation*}
W_{s}:=\left\{y \in \mathbb{R}^{n} \mid \lim _{t \rightarrow \infty} e^{\mathrm{A} t} y=0\right\} \quad P^{(s)}:=\sum_{j: \Re a_{j}<0} P_{j} \tag{2.37}
\end{equation*}
$$

is referred to as the stable subspace of the fixed point $x^{\star}=0$
Definition 2.5. The subspace

$$
\begin{equation*}
W_{0}:=P^{(c)} \mathbb{R}^{n}, \quad P^{(c)}:=\sum_{j: \Re a_{j}=0} P_{j} \tag{2.38}
\end{equation*}
$$

is referred to as the centre subspace of the fixed point $x^{\star}=0$
The above defined subspaces are invariant subspaces of $e^{A t}$, that is,

$$
\begin{align*}
e^{\mathbf{A} t} W_{u} & \subset W_{u} \\
e^{\mathbf{A} t} W_{s} & \subset W_{s} \\
e^{\mathbf{A} t} W_{0} & \subset W_{0} \tag{2.39}
\end{align*}
$$

Definition 2.6. The fixed point is called

- a sink if $W_{u}=W_{0}=\{0\}$,
- a source if $W_{s}=W_{0}=\{0\}$,
- a hyperbolic point if $W_{0}=\{0\}$,
- an elliptic point if $W_{u}=W_{s}=\{0\}$.

3 Linear systems in two dimensions

Let $n=2$, and let A be in Jordan canonical form, with $\operatorname{det} A \neq 0$. Then we can distinguish between the following behaviours, depending on the eigenvalues a_{1}, a_{2} of A.

1. $a_{1} \neq a_{2}$
(a) If $a_{1}, a_{2} \in \mathbb{R}$, then

$$
\mathrm{A}=\left[\begin{array}{cc}
a_{1} & 0 \tag{3.1}\\
0 & a_{2}
\end{array}\right]
$$

and

$$
e^{\mathbf{A} t}=\left[\begin{array}{cc}
e^{a_{1} t} & 0 \tag{3.2}\\
0 & e^{a_{2} t}
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
e^{a_{1} t} y_{1}(0) \\
e^{a_{2} t} y_{2}(0)
\end{array}\right]
$$

The orbits are curves of the form $y_{2}=c y_{1}^{a_{2} / a_{1}} . x^{\star}$ is called a node if $a_{1} a_{2}>0$, and a saddle if $a_{1} a_{2}<0$.
(b) If $a_{1}=a_{2}^{\dagger}=a+\imath \omega \in \mathbb{C}$, then the real canonical form of A is

$$
\mathrm{A}=\left[\begin{array}{cc}
a & -\omega \tag{3.3}\\
\omega & a
\end{array}\right]
$$

and

$$
e^{\mathrm{A} t}=e^{a t}\left[\begin{array}{cc}
\cos (\omega t) & -\sin (\omega t) \tag{3.4}\\
\sin (\omega t) & \cos (\omega t)
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{c}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
e^{a t}\left\{y_{1}(0) \cos (\omega t)-y_{2}(0) \sin (\omega t)\right\} \\
e^{a t}\left\{y_{1}(0) \sin (\omega t)+y_{2}(0) \cos (\omega t)\right\}
\end{array}\right]
$$

x^{\star} is called a focus if $a \neq 0$, and a center if $a=0$. The orbits are spirals or ellipses.
2. $a_{1}=a_{2}:=a$
(a) If a has geometric multiplicity 2 , then $A=a 1$ and $e^{\mathrm{A} t}=e^{a t} 1 ; x^{\star}$ is called a degenerate node.
(b) If a has geometric multiplicity 1 , then

$$
\mathrm{A}=\left[\begin{array}{ll}
a & 1 \tag{3.5}\\
0 & a
\end{array}\right]
$$

and

$$
e^{\mathbf{A} t}=e^{a t}\left[\begin{array}{ll}
1 & t \tag{3.6}\\
0 & 1
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
e^{a t}\left\{y_{1}(0)+y_{2}(0) t\right\} \\
e^{a t} y_{2}(0)
\end{array}\right]
$$

x^{\star} is called an improper node.

3.1 Classification of 2-dimensional linear systems

Consider $A \in \operatorname{End}\left(\mathbb{R}^{2}\right)$. The most general form is

$$
\mathrm{A}=\left[\begin{array}{ll}
a & b \tag{3.7}\\
c & d
\end{array}\right]
$$

The characteristic polynomial is

$$
\begin{equation*}
P(\mathrm{~A})=(\lambda-a)(\lambda-d)-b c=\lambda^{2}-\lambda(a+d)+a d-b c \tag{3.8}
\end{equation*}
$$

It can be rewritten in terms of invariants

$$
\begin{equation*}
P(\mathbf{A})=\lambda^{2}-\lambda \operatorname{tr} \mathrm{A}+\operatorname{det} \mathrm{A} \tag{3.9}
\end{equation*}
$$

The eigenvalues are

$$
\begin{align*}
& \lambda_{+}=\frac{\operatorname{tr} \mathrm{A}+\sqrt{\operatorname{tr}^{2} \mathrm{~A}-4 \operatorname{det} \mathrm{~A}}}{2} \\
& \lambda_{-}=\frac{\operatorname{tr} \mathrm{A}-\sqrt{\operatorname{tr}^{2} \mathrm{~A}-4 \operatorname{det} \mathrm{~A}}}{2} \tag{3.10}
\end{align*}
$$

one has

- $(\operatorname{trA})^{2}>4, \operatorname{det} \mathrm{~A}$ real eigenvalues
$-\operatorname{det} \mathrm{A}<0$ the origin is a saddle
$-\operatorname{det} A>0, \operatorname{tr} \mathrm{~A}>0$ the origin is a source
$-\operatorname{det} \mathrm{A}>0, \operatorname{tr} \mathrm{~A}<0$ the origin is a sink
- $\operatorname{tr}^{2} \mathrm{~A}<4 \operatorname{det} \mathrm{~A}$ real eigenvalues
$-\operatorname{det} \mathrm{A}>0, \operatorname{tr} \mathrm{~A}>0$ the origin is a spiralling source
$-\operatorname{det} A>0, \operatorname{trA}<0$ the origin is a spiralling sink

A centre is encountered for $\operatorname{tr} \mathrm{A}=0$

Appendices

A An extra: 2-d matrices in the Pauli basis

The Pauli matrices

$$
\sigma_{0}=1_{2}, \quad \sigma_{1}=\left[\begin{array}{ll}
0 & 1 \tag{A-1}\\
1 & 0
\end{array}\right], \quad \sigma_{2}=\left[\begin{array}{cc}
0 & -\imath \\
\imath & 0
\end{array}\right], \quad \sigma_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

provide a basis for $\operatorname{End}\left(\mathbb{C}^{2}\right)$. Namely any matrix A in $\operatorname{End}\left(\mathbb{C}^{2}\right)$ can be written as

$$
\begin{equation*}
A=\sum_{i=0}^{3} a_{i} \sigma_{i} \tag{A-2}
\end{equation*}
$$

Furthermore

$$
\begin{align*}
& {\left[\sigma_{i}, \sigma_{j}\right]=2 \imath \varepsilon_{i j k} \sigma_{k}} \\
& \left\{\sigma_{i}, \sigma_{j}\right\}:=\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=21_{2} \delta_{i j} \quad \text { anticommutativity } \tag{A-3}
\end{align*}
$$

for $\varepsilon_{i j k}$ the totally anti-symmetric symbol

$$
\begin{equation*}
\varepsilon_{i j k}=-\varepsilon_{i k j}=\varepsilon_{k i j} \tag{A-4}
\end{equation*}
$$

for example

$$
\begin{align*}
& \sigma_{1} \sigma_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -\imath \\
\imath & 0
\end{array}\right]=\left[\begin{array}{cc}
\imath & 0 \\
0 & -\imath
\end{array}\right] \\
& \sigma_{2} \sigma_{1}=\left[\begin{array}{cc}
0 & -\imath \\
\imath & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=-\left[\begin{array}{cc}
\imath & 0 \\
0 & -\imath
\end{array}\right] \tag{A-5}
\end{align*}
$$

Proposition A.1. Using the above algebra

$$
\begin{equation*}
A B=\left(\sum_{i=0}^{3} a_{i} \sigma_{i}\right)\left(\sum_{j=0}^{3} b_{j} \sigma_{j}\right)=\left(a_{0}^{2}+a \cdot b\right) \sigma_{0}+\sum_{i=1}^{3}\left[a_{0} b_{i}+b_{0} a_{i}+\imath(a \wedge b)_{i}\right] \sigma_{i} \tag{A-6}
\end{equation*}
$$

having defined

$$
a:=\left[\begin{array}{l}
a_{1} \tag{A-7}\\
a_{2} \\
a_{3}
\end{array}\right]
$$

Proof.

$$
\begin{equation*}
\left(\sum_{i=0}^{3} a_{i} \sigma_{i}\right)\left(\sum_{j=0}^{3} b_{j} \sigma_{j}\right)=\sum_{i=1}^{3} a_{i} b_{i} \sigma_{i}^{2}+\sum_{i=1}^{3} \sum_{j \neq i} a_{i} b_{j} \sigma_{i} \sigma_{j}=a \cdot b+\sum_{i=1}^{3} \sum_{j \neq i} a_{i} b_{j} \frac{\left\{\sigma_{i}, \sigma_{j}\right\}+\left[\sigma_{i}, \sigma_{j}\right]}{2} \tag{A-8}
\end{equation*}
$$

since

$$
\begin{equation*}
\sigma_{i} \sigma_{j}=\frac{\left\{\sigma_{i}, \sigma_{j}\right\}+\left[\sigma_{i}, \sigma_{j}\right]}{2} \tag{A-9}
\end{equation*}
$$

Use now the algebra of the Pauli matrices

$$
\begin{equation*}
\left(\sum_{i=0}^{3} a_{i} \sigma_{i}\right)\left(\sum_{j=0}^{3} b_{j} \sigma_{j}\right)=\sum_{i=1}^{3} \sum_{j \neq i} a_{i} b_{j} \frac{2 \imath \epsilon_{i j k} \sigma_{k}}{2}=\imath \sum_{i=1}^{3}(a \wedge b)_{i} \sigma_{i} \tag{A-10}
\end{equation*}
$$

A useful consequence is that

$$
\begin{align*}
& A^{2}=\left(a_{0}^{2}+a^{2}\right) \sigma_{0}+2 \sum_{i=1}^{3} a_{0} a_{i} \sigma_{i} \\
& A^{3}=\left(a_{0}^{2}+3 a^{2}\right) a_{0} \sigma_{0}+\left(3 a_{0}^{2}+a^{2}\right) \sum_{i=1}^{3} a_{i} \sigma_{i} \tag{A-11}
\end{align*}
$$

Proposition A.2.

$$
\begin{equation*}
A^{n}=\sum_{k=0}^{\operatorname{int}\left\{\frac{n}{2}\right\}}\binom{n}{2 k} a_{0}^{n-2 k} a^{2 k} \sigma_{0}+\left(\sum_{k=0}^{\operatorname{int}\left\{\frac{n+1}{2}\right\}-1}\binom{n}{2 k+1} a_{0}^{n-2 k-1} a^{2 k}\right) \sum_{i=1}^{3} a_{i} \sigma_{i} \tag{A-12}
\end{equation*}
$$

Proof.

$$
\begin{align*}
A^{n+1} & =\left[a_{0}\left(\sum_{k=0}^{\operatorname{int}\left\{\frac{n}{2}\right\}}\binom{n}{2 k} a_{0}^{n-2 k} a^{2 k}\right)+a^{2}\left(\sum_{k=0}^{\operatorname{int}\left\{\frac{n+1}{2}\right\}-1}\binom{n}{2 k+1} a_{0}^{n-2 k-1} a^{2 k}\right)\right] \sigma_{0} \\
& +\left[a_{0}\left(\sum_{k=0}^{\operatorname{int}\left\{\frac{n+1}{2}\right\}-1}\binom{n}{2 k+1} a_{0}^{n-2 k-1} a^{2 k}\right)+\sum_{k=0}^{\operatorname{int}\left\{\frac{n}{2}\right\}}\binom{n}{2 k} a_{0}^{n-2 k} a^{2 k}\right] \sum_{i=1}^{3} a_{i} \sigma_{i} \tag{A-13}
\end{align*}
$$

Observe now that

$$
\begin{equation*}
\sum_{k=0}^{\operatorname{int}\left\{\frac{n+1}{2}\right\}-1}\binom{n}{2 k+1} a_{0}^{n-2 k-1} a^{2 k+2}=\sum_{k=1}^{\operatorname{int}\left\{\frac{n+1}{2}\right\}}\binom{n}{2 k+1} a_{0}^{n+1-2 k} a^{2 k} \tag{A-14}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{k=0}^{\operatorname{int}\left\{\frac{n}{2}\right\}}\binom{n}{2 k} a_{0}^{n+1-2 k} a^{2 k}+\sum_{k=1}^{\operatorname{int}\left\{\frac{n+1}{2}\right\}}\binom{n}{2 k+1} a_{0}^{n+1-2 k} a^{2 k} \\
& =a_{0}^{n}+\sum_{k=1}^{\operatorname{int}\left\{\frac{n+1}{2}\right\}}\left[\binom{n}{2 k}+\binom{n}{2 k-1}\right] a_{0}^{n+1-2 k} a^{2 k} \\
& \quad=\sum_{k=0}^{\operatorname{int}\left\{\frac{n+1}{2}\right\}}\binom{n+1}{2 k} a_{0}^{n+1-2 k} a^{2 k} \tag{A-15}
\end{align*}
$$

analogously for the second term.
The exponential of $A \in \mathbb{C} \times \mathbb{C}$ can be written as

$$
\begin{align*}
e^{A} & =\sum_{n=0}^{\infty} \frac{1}{n!}\left[\sum_{k=0}^{\operatorname{int}\left\{\frac{n}{2}\right\}}\binom{n}{2 k} a_{0}^{n-2 k} a^{2 k} \sigma_{0}+\left(\sum_{k=0}^{\operatorname{int}\left\{\frac{n+1}{2}\right\}-1}\binom{n}{2 k+1} a_{0}^{n-2 k-1} a^{2 k}\right) \sum_{i=1}^{3} a_{i} \sigma_{i}\right] \\
& =\sum_{n=0}^{\infty} \frac{1}{(2 n)!}\left[\sum_{k=0}^{n}\binom{2 n}{2 k} a_{0}^{2(n-k)} a^{2 k} \sigma_{0}+\left(\sum_{k=0}^{n-1}\binom{2 n}{2 k+1} a_{0}^{2 n-2 k-1} a^{2 k}\right) \sum_{i=1}^{3} a_{i} \sigma_{i}\right] \\
& +\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!}\left[\sum_{k=0}^{n}\binom{2 n+1}{2 k} a_{0}^{2 n-2 k+1} a^{2 k} \sigma_{0}+\left(\sum_{k=0}^{n}\binom{2 n+1}{2 k+1} a_{0}^{2 n-2 k} a^{2 k}\right) \sum_{i=1}^{3} a_{i} \sigma_{i}\right] \tag{A-16}
\end{align*}
$$

Observing that

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{2 n}{2 k} a_{0}^{2(n-k)} a^{2 k}=\frac{1}{2}\left[\left(a_{0}+\sqrt{a^{2}}\right)^{2 n}+\left(a_{0}-\sqrt{a^{2}}\right)^{2 n}\right] \\
& \sum_{k=0}^{n}\binom{2 n+1}{2 k} a_{0}^{2 n-2 k+1} a^{2 k}=\frac{1}{2}\left[\left(a_{0}+\sqrt{a^{2}}\right)^{2 n+1}+\left(a_{0}-\sqrt{a^{2}}\right)^{2 n+1}\right] \tag{A-17}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{k=0}^{n-1}\binom{2 n}{2 k+1} a_{0}^{2 n-2 k-1} a^{2 k}=\frac{1}{2 \sqrt{a^{2}}}\left[\left(a_{0}+\sqrt{a^{2}}\right)^{2 n}-\left(a_{0}-\sqrt{a^{2}}\right)^{2 n}\right] \\
& \sum_{k=0}^{n}\binom{2 n+1}{2 k+1} a_{0}^{2 n-2 k} a^{2 k}=\frac{1}{2 \sqrt{a^{2}}}\left[\left(a_{0}+\sqrt{a^{2}}\right)^{2 n+1}-\left(a_{0}-\sqrt{a^{2}}\right)^{2 n+1}\right] \tag{A-18}
\end{align*}
$$

Which finally yields

$$
\begin{equation*}
e^{A}=\frac{e^{a_{0}+\sqrt{a^{2}}}+e^{a_{0}-\sqrt{a^{2}}}}{2} \sigma_{0}+\frac{e^{a_{0}+\sqrt{a^{2}}}-e^{a_{0}-\sqrt{a^{2}}}}{2 \sqrt{a^{2}}} \sum_{i=1}^{3} a_{i} \sigma_{i} \tag{A-19}
\end{equation*}
$$

In particular if

$$
\begin{equation*}
\operatorname{tr} A=0 \quad \Rightarrow \quad a_{0}=0 \tag{A-20}
\end{equation*}
$$

then

$$
\begin{equation*}
e^{A}=\cosh \left(\sqrt{a^{2}}\right) \sigma_{0}+\frac{\sinh \left(\sqrt{a^{2}}\right)}{\sqrt{a^{2}}} \sum_{i=1}^{3} a_{i} \sigma_{i} \tag{A-21}
\end{equation*}
$$

References

[1] N. Berglund. Geometrical theory of dynamical systems, 2007, arXiv:math/0111177.
[2] M. Cencini, F. Cecconi, and A. Vulpiani. Chaos: From Simple Models to Complex Systems, volume 17 of Advances in Statistical Mechanics. World Scientific, 2009.

