Lecture O1: Existence and uniqueness theorems and flows

Introduction

The expounded material can be found in
e ch. 2 of N. Berglund’s lecture notes [1]

e ch. 1 of [2]

1 Existence and uniqueness theorems

Let D C R"™. For any & € D we consider the ordinary differential equation

a'ct = f(act) (lla)
xrog = (1.1b)

driven by the vector field
f:D—R" (1.2)

We denote by C"(D;R"™) = C"(D) the space of R™-valued vector fields with support over D which are r-times
continuously differentiable. We then posit f € C"(D) for some r > 0.

A differential problem (1.1) specified by an evolution law (1.1a) and an initial data (1.1b) is also often called a
Cauchy problem. Equation (1.1b) fixes the initial data or initial condition for t = 0.

1.1 Existence

Theorem 1.1 (Peano—Cauchy). Let f € C(D) i.e. let f be a continuous vector field over D. For every x € D,
there exists at least one local solution of (1.1) through x, that is, there is an open interval I such that 0 € I and a
function

xi: [ — D (1.3)
such that (1.1a) and (1.1b) are satisfied fort € I.
The support [ of a solution x; can be extended as long as x; remains finite.
Proposition 1.1. Every solution
xi: I — D (1.4)

starting from xy = x can be continued to a maximal interval of existence I'nax = (tmin, tmax) comprising the time
t = 0 when the initial condition is assigned. If tyax < 00 OF tyin > —00, then for any compact K C D exists a
timet € Iyax suchthat xzy ¢ K.



In other words, the proposition states that either there is a time ¢ for which
xy € 0D (1.5)
i.e. reaches the boundary of D or the solution diverges. Very simple vector fields (1.2) may bring about explosions.

Example 1.1. For example

S'U /
o, /
T = oy \\ (1.6)
N
admits the solution
1
x 1.7
t % — ot ( )
For any « € R the solution diverges in finite time:
1
texpl = — (1.8)
Note the physical dimension of the problem
[x] = [space] 1
= [a] = [} = —[space| — [time] (1.9)
[t] = [time] time X space

The vector field (1.2) is (“time”)-autonomous. This means that it does not depend explicitly upon the “time”
variable with respect to which we differentiate ;.

Proposition 1.2. Let
T = Pt x) = () (1.10)

be the unique solution of (1.1). Then Ty = Ty, is the unique solution of the Cauchy problem evolving according to
(1.1a) from the initial data

Ty, = (1.11)
assigned at t, # 0.
Proof. By (1.10)
&= Dt — to, @) = Py, (@) (1.12)
hence for any {, € R
bt = Pt t,3) = 20 () =@l = @) (1.13)
which yields the claim. 0



The important consequence of the above proposition is that solutions of autonomous differential equations de-
pend only upon the time elapsed from the moment ¢, the initial condition is assigned but not upon %, itself. Non-
autonomous systems such as

d)t = f(a:t,t) (114)
can always be regarded as autonomous systems in a space with one dimension more. Upon defining
; df df
u fioy =50 = (115)
we can write
Ty = f(xy, 1) (1.16a)
ty=1 (1.16b)
Hence if we define £ = D x I C R”® x R = R**! with
y= m €E & g= m : E— R (1.17)
we arrive to the autonomous dynamical system
'!./u = g(yu) (1.18a)
Yo = m (1.18b)

1.2 Uniqueness

Theorem 1.2 (Picard-Lindelof). Suppose that f € C(D) and locally Lipschitzian that is, for every compact K C
D there exists a constant Ly € R such that

| f(x) = Ffy) < Lrllz—y (1.19)
for all x and y belonging to K. Then there is a unique solution of (1.1) for each initial data in D
We notice that a differentiable function satisfies the Lipschitz condition.
Example 1.2. The ordinary differential equation

. \\ ///'
i = a |z /3 \|/ (1.20)

is driven by a vector field non differentiable in zero. In general we can integrate (1.20) and obtain

9 3/2
Ty = <x2/3 + 50 t) (1.21)

If, however, we assign the initial data to be z = 0 we can find the solutions (1.21), and also
s =0 (1.22)

We can combine these solutions together and generate a one parameter ¢, family of solutions taking the form

{0 0 <t <t

(223 + 2at)”* . <t

Tt =

(1.23)

3



An important implication of the Picard-Lindeldf theorem is that for any finite time different solutions of (1.1)
driven by a smooth vector field cannot intersect. Namely we have

Proposition 1.3. For any x € D there exists only one solution of (1.1) with f € C"(D), r > 1 passing through this
point.

Proof. Let #\”, i = 1,2 solutions of (1.1) satisfying

T, =z
) — o (1.24)
Since (1.1) is autonomous
Tt = Ty (11 t) (1.25)
is also a solution of (1.1) satisfying
@y, = a) = x = (1.26)
We thus see that our starting assumption leads to a contradiction with the Picard-Lindel6f theorem. O

1.3 Smooth dependence upon initial data

Let us now suppose that the vector field f in (1.1a) carries a parametric dependence upon a set of parameters.
Specifically let us suppose that

f € C"(Dy x Dy;R™) (1.27)
We will denote by @ coordinates over D1 C R"™ and by y coordinates over Dy C R™ so that
f(x,y) € R" (1.28)
Note that we are not assuming any relation between the integers m and n.

Theorem 1.3 (Picard-Lindelof). Suppose that r > 1in (1.27). In words: f is at least once continuously differen-
tiable with respect to all its arguments. Let I the maximal interval of existence of the unique solution of the ordinary
differential equation

T = f(xi;y) (1.29a)

xro=1x (1.29b)
Under these hypotheses we can write the unique solution of (1.29) as
Ty = ¢(t, @5 y) = Pu(x:y) (1.30)
where
¢, € C"(I x Dy x Dy, Dy) (1.31)

Thus, under smoothness assumptions over the vector field f we are entitled to consider derivatives of solutions
(1.29) with respect to all its parametric dependencies. Moreover, if we generically denote by @ the derivative of x;
with respect to any of its parameters the same notation may apply to three different cases:
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1. & € R™™™if
£l =0y @& = 0y ® By(x;y)
2. & e R™ if
£ = 0z @& = 02 © B4(x;y)
3. & e R™if
& =& = dy(miy)
For the first case we have that

£ =€ O, f(&sy) +0y® fl&y)

(1.32)

(1.33)

(1.34)

as the dependence upon the parameters vy is explicit. In the remaining two cases, the dependence upon the parameters

is implicit through the trajectory. We find that
E{ - 52 ) 8€t.f(£t)
For all the above cases it is expedient to define
AT = (0, ) ()
In other words, A defines an endomorphism of R™: with slight abuse of language A € End(R").

Proposition 1.4. Let t denote the transposition operation, then
Ar = (O, @ f)(x4)
and
Fi:= (0x ® ¢1)(x)
then
Fr=AF,
Proof. By hypothesis

doe, . m Prrat(x) — () i Par © () — di(x)
dt dtl0 dt aulo dt

= fodi(x)
hence it follows

Oz ® ¢t($) = %395 ® ¢i(x) =
(0z @ 1) () - Oy () f © Dt(®) = (Opy(a) @ f)' © Pt(@) - (0 @ P)e(x) = Ay

Of particular interest is the variation with respect to initial data

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)



Definition 1.1. We will refer to the quantity
as the fundamental solution of the linearized dynamics.

By construction (1.42) satisfies the initial condition

Fo=1 (1.43)
Namely from
do(x) = (1.44)
it follows that
Fo =0z ® ¢po(x) =1 (1.45)
Example 1.3. Let us consider again
:'Ut:am? = Ty = ;_10”5 (1.46)
We have then
Oy = (313—04175)21’2 = ) (1.47)
which satisfies
YL L A (1.48)

(1 —at)da?

T

as expected form direct differentiation of the ordinary differential equation in (1.46).

2 Flows: terminology

Definition 2.1 (Homeomorphism). Let D C R" be an open domain. A map ¢: D +— D is called an homeomor-
phism if it is continuous and admits a continuous inverse.

Definition 2.2 (Diffeomorphism). Let D C R"™ be an open domain. A map ¢: D +— D is called a diffeomorphism
if it is continuously differentiable and admits a continuously differentiable inverse.

Definition 2.3. Similarly, for all r > 1, a C"-diffeomorphism is an invertible map ¢: D +— D such that both ¢ and
¢~ admit continuous derivatives up to order r.

Definition 2.4 (flow). A one parameter family of diffeomorphisms ®

d:RxR"— R"” 2.1
such that
dy=1
G0, = Dy 2.2)

is called flow.

The definition of flow implies ®_; = &, ! and therefore that ® forms a one parameter ¢ group of transformations.
The combined use of the existence and uniqueness theorems for (1.1) allows us to conclude that

Proposition 2.1. The solution of (1.1) regarded as the map ¢: R x D +— D is a flow to which we will also refer as
the fundamental solution of (1.1).



3 Evolution of volumes

Proposition 3.1. Let f € C"(D) withr > 1andlet M C D. Let us denote by M, the image of M through the flow

& of (1.1) with f sufficiently regular. Let us define

[M]

vM = vol(My)

then we have
W= [ @, pia)
My

Proof. The flow being a diffeomorphism means that

1. ¢ is differentiable with the initial data
L B L / 4"z |det(Ds @ é0) ()|
M; M

2. ¢ is invertible thus
do(x) =x
implies
det (0 ® ¢po)(x) = det1 =1
and
det(0p @ @) (x) > 0
The strict inequality holds because otherwise
Fi = (0z ® ¢¢)(x)

solving the associated linearized dynamics

@ = awtf(wt) = (8213t ® f)(a:t) -

3.1

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

3.7)

(3.8)

would not be invertible. This is a contradiction because F; is the unique fundamental solution of the linearized

dynamics.

We arrived at
V;[M] _ / A"z = / d"z det(0z ® ¢¢)(x)
My M

We observe that for any strictly positive matrix A the equality
Indet A =trin A

holds true. Then

d d
s Ind, ® ¢ = tr(0y ® qbt)‘la(&,; ® ¢Py)

= tr(0z @ 1) (O ® P1) O, @ f(1) = tr O, @ f (1) = (Do, - F) ()

3.9)

(3.10)

(3.11)
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