
Lecture 01: Existence and uniqueness theorems and flows

Introduction

The expounded material can be found in

• ch. 2 of N. Berglund’s lecture notes [1]

• ch. 1 of [2]

1 Existence and uniqueness theorems

Let D ⊂ Rn. For any x ∈ D we consider the ordinary differential equation

ẋt = f(xt) (1.1a)

x0 = x (1.1b)

driven by the vector field

f : D 7→ Rn (1.2)

We denote by Cr(D;Rn) ≡ Cr(D) the space of Rn-valued vector fields with support over D which are r-times
continuously differentiable. We then posit f ∈ Cr(D) for some r ≥ 0.

A differential problem (1.1) specified by an evolution law (1.1a) and an initial data (1.1b) is also often called a
Cauchy problem. Equation (1.1b) fixes the initial data or initial condition for t = 0.

1.1 Existence

Theorem 1.1 (Peano–Cauchy). Let f ∈ C(D) i.e. let f be a continuous vector field over D. For every x ∈ D,
there exists at least one local solution of (1.1) through x, that is, there is an open interval I such that 0 ∈ I and a
function

xt : I 7→ D (1.3)

such that (1.1a) and (1.1b) are satisfied for t ∈ I .

The support I of a solution xt can be extended as long as xt remains finite.

Proposition 1.1. Every solution

xt : I 7→ D (1.4)

starting from x0 = x can be continued to a maximal interval of existence Imax = (tmin, tmax) comprising the time
t = 0 when the initial condition is assigned. If tmax < ∞ or tmin > −∞, then for any compact K ⊂ D exists a
time t ∈ Imax such that xt ∈/ K.
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In other words, the proposition states that either there is a time t for which

xt ∈ ∂D (1.5)

i.e. reaches the boundary of D or the solution diverges. Very simple vector fields (1.2) may bring about explosions.

Example 1.1. For example

ẋt = αx2t

ẋ

x

(1.6)

admits the solution

xt =
1

1
x − α t

(1.7)

For any x ∈ R+ the solution diverges in finite time:

texpl =
1

αx
(1.8)

Note the physical dimension of the problem

[x] = [space]

[t] = [time]
⇒ [α] =

[
1

time× space

]
= −[space]− [time] (1.9)

The vector field (1.2) is (“time”)-autonomous. This means that it does not depend explicitly upon the “time”
variable with respect to which we differentiate xt.

Proposition 1.2. Let

xt = φ(t,x) ≡ φt(x) (1.10)

be the unique solution of (1.1). Then x̃t = xt−to is the unique solution of the Cauchy problem evolving according to
(1.1a) from the initial data

x̃to = x (1.11)

assigned at to 6= 0.

Proof. By (1.10)

x̃t = φ(t− to,x) ≡ φt−to(x) (1.12)

hence for any to ∈ R

ẋt−to =
dφ

dt
(t− to,x) =

dφ

du
(u,x)

∣∣∣∣
u=t−to

= f(xu)|u=t−to = f(xt−to) (1.13)

which yields the claim.
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The important consequence of the above proposition is that solutions of autonomous differential equations de-
pend only upon the time elapsed from the moment to the initial condition is assigned but not upon to itself. Non-
autonomous systems such as

ẋt = f(xt, t) (1.14)

can always be regarded as autonomous systems in a space with one dimension more. Upon defining

u = t ⇒ ḟ(t) =
df

dt
(t) ≡ df

du
(u) (1.15)

we can write

ẋu = f(xt, t) (1.16a)

ṫu = 1 (1.16b)

Hence if we define E = D × I ⊂ Rn × R = Rn+1 with

y =

[
x
t

]
∈ E & g =

[
f
1

]
: E 7→ Rn+1 (1.17)

we arrive to the autonomous dynamical system

ẏu = g(yu) (1.18a)

y0 =

[
x
0

]
(1.18b)

1.2 Uniqueness

Theorem 1.2 (Picard–Lindelöf). Suppose that f ∈ C(D) and locally Lipschitzian that is, for every compact K ⊂
D there exists a constant LK ∈ R+ such that

‖ f(x)− f(y) ‖≤ LK ‖ x− y ‖ (1.19)

for all x and y belonging to K. Then there is a unique solution of (1.1) for each initial data in D

We notice that a differentiable function satisfies the Lipschitz condition.

Example 1.2. The ordinary differential equation

ẋt = α |xt|1/3

ẋ

x

(1.20)

is driven by a vector field non differentiable in zero. In general we can integrate (1.20) and obtain

xt =

(
x2/3 +

2

3
α t

)3/2

(1.21)

If, however, we assign the initial data to be x = 0 we can find the solutions (1.21), and also

xt = 0 (1.22)

We can combine these solutions together and generate a one parameter t∗ family of solutions taking the form

xt =

{
0 0 ≤ t ≤ t∗(
x2/3 + 2

3α t
)3/2

t∗ < t
(1.23)
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An important implication of the Picard–Lindelöf theorem is that for any finite time different solutions of (1.1)
driven by a smooth vector field cannot intersect. Namely we have

Proposition 1.3. For any x ∈ D there exists only one solution of (1.1) with f ∈ Cr(D), r ≥ 1 passing through this
point.

Proof. Let x(i)
t , i = 1, 2 solutions of (1.1) satisfying

x
(1)
t1

= x

x
(2)
t2

= x (1.24)

Since (1.1) is autonomous

x̃t = xt−(t1−t2) (1.25)

is also a solution of (1.1) satisfying

x̃t1 = x
(2)
t2

= x = x
(1)
t1

(1.26)

We thus see that our starting assumption leads to a contradiction with the Picard–Lindelöf theorem.

1.3 Smooth dependence upon initial data

Let us now suppose that the vector field f in (1.1a) carries a parametric dependence upon a set of parameters.
Specifically let us suppose that

f ∈ Cr(D1 ×D2;Rn) (1.27)

We will denote by x coordinates over D1 ⊂ Rn and by y coordinates over D2 ⊂ Rm so that

f(x,y) ∈ Rn (1.28)

Note that we are not assuming any relation between the integers m and n.

Theorem 1.3 (Picard–Lindelöf). Suppose that r ≥ 1 in (1.27). In words: f is at least once continuously differen-
tiable with respect to all its arguments. Let I the maximal interval of existence of the unique solution of the ordinary
differential equation

ẋt = f(xt;y) (1.29a)

x0 = x (1.29b)

Under these hypotheses we can write the unique solution of (1.29) as

xt = φ(t,x;y) ≡ φt(x;y) (1.30)

where

φt ∈ Cr(I ×D1 ×D2 , D1) (1.31)

Thus, under smoothness assumptions over the vector field f we are entitled to consider derivatives of solutions
(1.29) with respect to all its parametric dependencies. Moreover, if we generically denote by x′

t the derivative of xt

with respect to any of its parameters the same notation may apply to three different cases:
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1. ξ′t ∈ Rn×m if

ξ′t = ∂y ⊗ ξt ≡ ∂y ⊗Φt(x;y) (1.32)

2. ξ′t ∈ Rn2
if

ξ′t = ∂x ⊗ ξt ≡ ∂x ⊗Φt(x;y) (1.33)

3. ξ′t ∈ Rn if

ξ′t = ξ̇t ≡ Φ̇t(x;y) (1.34)

For the first case we have that

ξ̇′t = ξ′t · ∂ξtf(ξt;y) + ∂y ⊗ f(ξt,y)

as the dependence upon the parameters y is explicit. In the remaining two cases, the dependence upon the parameters
is implicit through the trajectory. We find that

ξ̇′t = ξ′t · ∂ξtf(ξt) (1.35)

For all the above cases it is expedient to define

Aij
t = (∂

xj
t
⊗ f i)(xt) (1.36)

In other words, A defines an endomorphism of Rn: with slight abuse of language A ∈ End(Rn).

Proposition 1.4. Let t denote the transposition operation, then

At := (∂xt ⊗ f)(xt) (1.37)

and

Ft := (∂x ⊗ φt)(x) (1.38)

then

Ḟt = At Ft (1.39)

Proof. By hypothesis

dφt

dt
(x) = lim

dt↓0

φt+dt(x)− φt(x)

dt
= lim

dt↓0

φdt ◦ φt(x)− φt(x)

dt
= f ◦ φt(x) (1.40)

hence it follows

∂x ⊗ φ̇t(x) =
d

dt
∂x ⊗ φt(x) =

(∂x ⊗ φt)(x) · ∂φt(x)f ◦ φt(x) = (∂φt(x) ⊗ f)t ◦ φt(x) · (∂x ⊗ φ)t(x) = At Ft (1.41)

Of particular interest is the variation with respect to initial data
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Definition 1.1. We will refer to the quantity

Ft = (∂x ⊗ φt)(x) (1.42)

as the fundamental solution of the linearized dynamics.

By construction (1.42) satisfies the initial condition

F0 = 1 (1.43)

Namely from

φ0(x) = x (1.44)

it follows that

F0 ≡ ∂x ⊗ φ0(x) = 1 (1.45)

Example 1.3. Let us consider again

ẋt = αx2t ⇒ xt =
1

1
x − α t

(1.46)

We have then

∂xxt =
1

( 1x − α t)2 x2
:= x′t (1.47)

which satisfies

ẋ′t =
2α

( 1x − α t)3 x2
= 2αxt x

′
t (1.48)

as expected form direct differentiation of the ordinary differential equation in (1.46).

2 Flows: terminology

Definition 2.1 (Homeomorphism). Let D ⊂ Rn be an open domain. A map φ : D 7→ D is called an homeomor-
phism if it is continuous and admits a continuous inverse.

Definition 2.2 (Diffeomorphism). Let D ⊂ Rn be an open domain. A map φ : D 7→ D is called a diffeomorphism
if it is continuously differentiable and admits a continuously differentiable inverse.

Definition 2.3. Similarly, for all r ≥ 1, a Cr-diffeomorphism is an invertible map φ : D 7→ D such that both φ and
φ−1 admit continuous derivatives up to order r.

Definition 2.4 (flow). A one parameter family of diffeomorphisms Φt

Φ : R× Rn 7→ Rn (2.1)

such that

Φ0 = 1

ΦtΦs = Φt+s (2.2)

is called flow.

The definition of flow implies Φ−t = Φ−1t and therefore that Φ forms a one parameter t group of transformations.
The combined use of the existence and uniqueness theorems for (1.1) allows us to conclude that

Proposition 2.1. The solution of (1.1) regarded as the map φ : R×D 7→ D is a flow to which we will also refer as
the fundamental solution of (1.1).
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3 Evolution of volumes

Proposition 3.1. Let f ∈ Cr(D) with r ≥ 1 and let M ⊂ D. Let us denote by Mt the image of M through the flow
φ of (1.1) with f sufficiently regular. Let us define

V
[M ]
t = Vol(Mt) (3.1)

then we have

V̇
[M ]
t =

∫
Mt

dnx (∂x · f)(x) (3.2)

Proof. The flow being a diffeomorphism means that

1. φ is differentiable with the initial data

V
[M ]
t =

∫
Mt

dnx =

∫
M

dnx |det(∂x ⊗ φt)(x)| (3.3)

2. φ is invertible thus

φ0(x) = x (3.4)

implies

det(∂x ⊗ φ0)(x) = det 1 = 1 (3.5)

and

det(∂x ⊗ φt)(x) > 0 (3.6)

The strict inequality holds because otherwise

Ft = (∂x ⊗ φt)(x) (3.7)

solving the associated linearized dynamics

ẋ′ = x′ · ∂xtf(xt) ≡ (∂xt ⊗ f)(xt) · x′ (3.8)

would not be invertible. This is a contradiction because Ft is the unique fundamental solution of the linearized
dynamics.

We arrived at

V
[M ]
t =

∫
Mt

dnx =

∫
M

dnx det(∂x ⊗ φt)(x) (3.9)

We observe that for any strictly positive matrix A the equality

ln detA = tr lnA (3.10)

holds true. Then

d

dt
tr ln ∂x ⊗ φt = tr(∂x ⊗ φt)

−1 d

dt
(∂x ⊗ φt)

= tr(∂x ⊗ φt)
−1(∂x ⊗ φt) ∂xt ⊗ f(xt) = tr ∂xt ⊗ f(xt) = (∂xt · f)(xt) (3.11)
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