Lecture 01: Existence and uniqueness theorems and flows

Introduction

The expounded material can be found in

- ch. 2 of N. Berglund's lecture notes [1]
- ch. 1 of [2]

1 Existence and uniqueness theorems

Let $D \subset \mathbb{R}^{n}$. For any $\boldsymbol{x} \in D$ we consider the ordinary differential equation

$$
\begin{gather*}
\dot{\boldsymbol{x}}_{t}=\boldsymbol{f}\left(\boldsymbol{x}_{t}\right) \tag{1.1a}\\
\boldsymbol{x}_{0}=\boldsymbol{x} \tag{1.1b}
\end{gather*}
$$

driven by the vector field

$$
\begin{equation*}
f: D \mapsto \mathbb{R}^{n} \tag{1.2}
\end{equation*}
$$

We denote by $\mathrm{C}^{r}\left(D ; \mathbb{R}^{n}\right) \equiv \mathrm{C}^{r}(D)$ the space of \mathbb{R}^{n}-valued vector fields with support over D which are r-times continuously differentiable. We then posit $f \in \mathrm{C}^{r}(D)$ for some $r \geq 0$.

A differential problem (1.1) specified by an evolution law (1.1a) and an initial data (1.1b) is also often called a Cauchy problem. Equation (1.1b) fixes the initial data or initial condition for $t=0$.

1.1 Existence

Theorem 1.1 (Peano-Cauchy). Let $\boldsymbol{f} \in \mathrm{C}(D)$ i.e. let \boldsymbol{f} be a continuous vector field over D. For every $\boldsymbol{x} \in D$, there exists at least one local solution of (1.1) through \boldsymbol{x}, that is, there is an open interval I such that $0 \in I$ and a function

$$
\begin{equation*}
\boldsymbol{x}_{t}: I \mapsto D \tag{1.3}
\end{equation*}
$$

such that (1.1a) and (1.1b) are satisfied for $t \in I$.
The support I of a solution \boldsymbol{x}_{t} can be extended as long as \boldsymbol{x}_{t} remains finite.
Proposition 1.1. Every solution

$$
\begin{equation*}
\boldsymbol{x}_{t}: I \mapsto D \tag{1.4}
\end{equation*}
$$

starting from $\boldsymbol{x}_{0}=\boldsymbol{x}$ can be continued to a maximal interval of existence $I_{\max }=\left(t_{\min }, t_{\max }\right)$ comprising the time $t=0$ when the initial condition is assigned. If $t_{\max }<\infty$ or $t_{\min }>-\infty$, then for any compact $K \subset D$ exists a time $t \in I_{\text {max }}$ such that $\boldsymbol{x}_{t} \notin K$.

In other words, the proposition states that either there is a time t for which

$$
\begin{equation*}
\boldsymbol{x}_{t} \in \partial D \tag{1.5}
\end{equation*}
$$

i.e. reaches the boundary of D or the solution diverges. Very simple vector fields (1.2) may bring about explosions.

Example 1.1. For example

$$
\begin{equation*}
\dot{x}_{t}=\alpha x_{t}^{2} \tag{1.6}
\end{equation*}
$$

admits the solution

$$
\begin{equation*}
x_{t}=\frac{1}{\frac{1}{x}-\alpha t} \tag{1.7}
\end{equation*}
$$

For any $x \in \mathbb{R}_{+}$the solution diverges in finite time:

$$
\begin{equation*}
t_{\mathrm{expl}}=\frac{1}{\alpha x} \tag{1.8}
\end{equation*}
$$

Note the physical dimension of the problem

$$
\begin{align*}
& {[x]=[\text { space }]} \tag{1.9}\\
& {[t]=[\text { time }]}
\end{align*} \quad \Rightarrow \quad[\alpha]=\left[\frac{1}{\text { time } \times \text { space }}\right]=-[\text { space }]-[\text { time }]
$$

The vector field (1.2) is ("time")-autonomous. This means that it does not depend explicitly upon the "time" variable with respect to which we differentiate \boldsymbol{x}_{t}.

Proposition 1.2. Let

$$
\begin{equation*}
\boldsymbol{x}_{t}=\boldsymbol{\phi}(t, \boldsymbol{x}) \equiv \phi_{t}(\boldsymbol{x}) \tag{1.10}
\end{equation*}
$$

be the unique solution of (1.1). Then $\tilde{\boldsymbol{x}}_{t}=\boldsymbol{x}_{t-t_{\mathrm{o}}}$ is the unique solution of the Cauchy problem evolving according to (1.1a) from the initial data

$$
\begin{equation*}
\tilde{\boldsymbol{x}}_{t_{\mathrm{o}}}=\boldsymbol{x} \tag{1.11}
\end{equation*}
$$

assigned at $t_{\mathrm{o}} \neq 0$.
Proof. By (1.10)

$$
\begin{equation*}
\tilde{\boldsymbol{x}}_{t}=\boldsymbol{\phi}\left(t-t_{\mathrm{o}}, \boldsymbol{x}\right) \equiv \boldsymbol{\phi}_{t-t_{\mathrm{o}}}(\boldsymbol{x}) \tag{1.12}
\end{equation*}
$$

hence for any $t_{\mathrm{o}} \in \mathbb{R}$

$$
\begin{equation*}
\dot{\boldsymbol{x}}_{t-t_{\mathrm{o}}}=\frac{d \boldsymbol{\phi}}{d t}\left(t-t_{\mathrm{o}}, \boldsymbol{x}\right)=\left.\frac{d \boldsymbol{\phi}}{d u}(u, \boldsymbol{x})\right|_{u=t-t_{\mathrm{o}}}=\left.\boldsymbol{f}\left(\boldsymbol{x}_{u}\right)\right|_{u=t-t_{\mathrm{o}}}=\boldsymbol{f}\left(\boldsymbol{x}_{t-t_{\mathrm{o}}}\right) \tag{1.13}
\end{equation*}
$$

which yields the claim.

The important consequence of the above proposition is that solutions of autonomous differential equations depend only upon the time elapsed from the moment t_{o} the initial condition is assigned but not upon t_{o} itself. Nonautonomous systems such as

$$
\begin{equation*}
\dot{\boldsymbol{x}}_{t}=\boldsymbol{f}\left(\boldsymbol{x}_{t}, t\right) \tag{1.14}
\end{equation*}
$$

can always be regarded as autonomous systems in a space with one dimension more. Upon defining

$$
\begin{equation*}
u=t \quad \Rightarrow \quad \dot{f}(t)=\frac{d f}{d t}(t) \equiv \frac{d f}{d u}(u) \tag{1.15}
\end{equation*}
$$

we can write

$$
\begin{gather*}
\dot{\boldsymbol{x}}_{u}=\boldsymbol{f}\left(\boldsymbol{x}_{t}, t\right) \tag{1.16a}\\
\dot{t}_{u}=1 \tag{1.16b}
\end{gather*}
$$

Hence if we define $E=D \times I \subset \mathbb{R}^{n} \times \mathbb{R}=\mathbb{R}^{n+1}$ with

$$
\boldsymbol{y}=\left[\begin{array}{c}
\boldsymbol{x} \tag{1.17}\\
t
\end{array}\right] \in E \quad \& \quad \boldsymbol{g}=\left[\begin{array}{l}
\boldsymbol{f} \\
1
\end{array}\right]: E \mapsto \mathbb{R}^{n+1}
$$

we arrive to the autonomous dynamical system

$$
\begin{gather*}
\dot{\boldsymbol{y}}_{u}=\boldsymbol{g}\left(\boldsymbol{y}_{u}\right) \tag{1.18a}\\
\boldsymbol{y}_{0}=\left[\begin{array}{l}
\boldsymbol{x} \\
0
\end{array}\right] \tag{1.18b}
\end{gather*}
$$

1.2 Uniqueness

Theorem 1.2 (Picard-Lindelöf). Suppose that $\boldsymbol{f} \in \mathrm{C}(D)$ and locally Lipschitzian that is, for every compact $K \subset$ D there exists a constant $L_{K} \in \mathbb{R}_{+}$such that

$$
\begin{equation*}
\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{y})\| \leq L_{K}\|\boldsymbol{x}-\boldsymbol{y}\| \tag{1.19}
\end{equation*}
$$

for all \boldsymbol{x} and \boldsymbol{y} belonging to K. Then there is a unique solution of (1.1) for each initial data in D
We notice that a differentiable function satisfies the Lipschitz condition.
Example 1.2. The ordinary differential equation

$$
\begin{equation*}
\dot{x}_{t}=\alpha\left|x_{t}\right|^{1 / 3} \tag{1.20}
\end{equation*}
$$

is driven by a vector field non differentiable in zero. In general we can integrate (1.20) and obtain

$$
\begin{equation*}
x_{t}=\left(x^{2 / 3}+\frac{2}{3} \alpha t\right)^{3 / 2} \tag{1.21}
\end{equation*}
$$

If, however, we assign the initial data to be $x=0$ we can find the solutions (1.21), and also

$$
\begin{equation*}
x_{t}=0 \tag{1.22}
\end{equation*}
$$

We can combine these solutions together and generate a one parameter t_{*} family of solutions taking the form

$$
x_{t}= \begin{cases}0 & 0 \leq t \leq t_{*} \tag{1.23}\\ \left(x^{2 / 3}+\frac{2}{3} \alpha t\right)^{3 / 2} & t_{*}<t\end{cases}
$$

An important implication of the Picard-Lindelöf theorem is that for any finite time different solutions of (1.1) driven by a smooth vector field cannot intersect. Namely we have

Proposition 1.3. For any $\boldsymbol{x} \in D$ there exists only one solution of (1.1) with $\boldsymbol{f} \in C^{r}(D), r \geq 1$ passing through this point.

Proof. Let $\boldsymbol{x}_{t}^{(i)}, i=1,2$ solutions of (1.1) satisfying

$$
\begin{align*}
& \boldsymbol{x}_{t_{1}}^{(1)}=\boldsymbol{x} \\
& \boldsymbol{x}_{t_{2}}^{(2)}=\boldsymbol{x} \tag{1.24}
\end{align*}
$$

Since (1.1) is autonomous

$$
\begin{equation*}
\tilde{\boldsymbol{x}}_{t}=\boldsymbol{x}_{t-\left(t_{1}-t_{2}\right)} \tag{1.25}
\end{equation*}
$$

is also a solution of (1.1) satisfying

$$
\begin{equation*}
\tilde{\boldsymbol{x}}_{t_{1}}=\boldsymbol{x}_{t_{2}}^{(2)}=\boldsymbol{x}=\boldsymbol{x}_{t_{1}}^{(1)} \tag{1.26}
\end{equation*}
$$

We thus see that our starting assumption leads to a contradiction with the Picard-Lindelöf theorem.

1.3 Smooth dependence upon initial data

Let us now suppose that the vector field \boldsymbol{f} in (1.1a) carries a parametric dependence upon a set of parameters. Specifically let us suppose that

$$
\begin{equation*}
\boldsymbol{f} \in \mathrm{C}^{r}\left(D_{1} \times D_{2} ; \mathbb{R}^{n}\right) \tag{1.27}
\end{equation*}
$$

We will denote by \boldsymbol{x} coordinates over $D_{1} \subset \mathbb{R}^{n}$ and by \boldsymbol{y} coordinates over $D_{2} \subset \mathbb{R}^{m}$ so that

$$
\begin{equation*}
\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^{n} \tag{1.28}
\end{equation*}
$$

Note that we are not assuming any relation between the integers m and n.
Theorem 1.3 (Picard-Lindelöf). Suppose that $r \geq 1$ in (1.27). In words: \boldsymbol{f} is at least once continuously differentiable with respect to all its arguments. Let I the maximal interval of existence of the unique solution of the ordinary differential equation

$$
\begin{gather*}
\dot{\boldsymbol{x}}_{t}=\boldsymbol{f}\left(\boldsymbol{x}_{t} ; \boldsymbol{y}\right) \tag{1.29a}\\
\boldsymbol{x}_{0}=\boldsymbol{x} \tag{1.29b}
\end{gather*}
$$

Under these hypotheses we can write the unique solution of (1.29) as

$$
\begin{equation*}
\boldsymbol{x}_{t}=\boldsymbol{\phi}(t, \boldsymbol{x} ; \boldsymbol{y}) \equiv \phi_{t}(\boldsymbol{x} ; \boldsymbol{y}) \tag{1.30}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{t} \in C^{r}\left(I \times D_{1} \times D_{2}, D_{1}\right) \tag{1.31}
\end{equation*}
$$

Thus, under smoothness assumptions over the vector field f we are entitled to consider derivatives of solutions (1.29) with respect to all its parametric dependencies. Moreover, if we generically denote by $\boldsymbol{x}_{t}^{\prime}$ the derivative of \boldsymbol{x}_{t} with respect to any of its parameters the same notation may apply to three different cases:

1. $\boldsymbol{\xi}_{t}^{\prime} \in \mathbb{R}^{n \times m}$ if

$$
\begin{equation*}
\boldsymbol{\xi}_{t}^{\prime}=\partial_{\boldsymbol{y}} \otimes \boldsymbol{\xi}_{t} \equiv \partial_{\boldsymbol{y}} \otimes \boldsymbol{\Phi}_{t}(\boldsymbol{x} ; \boldsymbol{y}) \tag{1.32}
\end{equation*}
$$

2. $\xi_{t}^{\prime} \in \mathbb{R}^{n^{2}}$ if

$$
\begin{equation*}
\boldsymbol{\xi}_{t}^{\prime}=\partial_{\boldsymbol{x}} \otimes \boldsymbol{\xi}_{t} \equiv \partial_{\boldsymbol{x}} \otimes \boldsymbol{\Phi}_{t}(\boldsymbol{x} ; \boldsymbol{y}) \tag{1.33}
\end{equation*}
$$

3. $\boldsymbol{\xi}_{t}^{\prime} \in \mathbb{R}^{n}$ if

$$
\begin{equation*}
\boldsymbol{\xi}_{t}^{\prime}=\dot{\boldsymbol{\xi}}_{t} \equiv \dot{\boldsymbol{\Phi}}_{t}(\boldsymbol{x} ; \boldsymbol{y}) \tag{1.34}
\end{equation*}
$$

For the first case we have that

$$
\dot{\boldsymbol{\xi}}_{t}^{\prime}=\boldsymbol{\xi}_{t}^{\prime} \cdot \partial_{\boldsymbol{\xi}_{t}} \boldsymbol{f}\left(\boldsymbol{\xi}_{t} ; \boldsymbol{y}\right)+\partial_{\boldsymbol{y}} \otimes \boldsymbol{f}\left(\boldsymbol{\xi}_{t}, \boldsymbol{y}\right)
$$

as the dependence upon the parameters \boldsymbol{y} is explicit. In the remaining two cases, the dependence upon the parameters is implicit through the trajectory. We find that

$$
\begin{equation*}
\dot{\xi}_{t}^{\prime}=\xi_{t}^{\prime} \cdot \partial_{\xi_{t}} f\left(\xi_{t}\right) \tag{1.35}
\end{equation*}
$$

For all the above cases it is expedient to define

$$
\begin{equation*}
\mathrm{A}_{t}^{i j}=\left(\partial_{\boldsymbol{x}_{t}^{j}} \otimes \boldsymbol{f}^{i}\right)\left(\boldsymbol{x}_{t}\right) \tag{1.36}
\end{equation*}
$$

In other words, A defines an endomorphism of \mathbb{R}^{n} : with slight abuse of language $A \in \operatorname{End}\left(\mathbb{R}^{n}\right)$.
Proposition 1.4. Let t denote the transposition operation, then

$$
\begin{equation*}
\mathrm{A}_{t}:=\left(\partial_{\boldsymbol{x}_{t}} \otimes \boldsymbol{f}\right)\left(\boldsymbol{x}_{t}\right) \tag{1.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{F}_{t}:=\left(\partial_{\boldsymbol{x}} \otimes \phi_{t}\right)(\boldsymbol{x}) \tag{1.38}
\end{equation*}
$$

then

$$
\begin{equation*}
\dot{\mathrm{F}}_{t}=\mathrm{A}_{t} \mathrm{~F}_{t} \tag{1.39}
\end{equation*}
$$

Proof. By hypothesis

$$
\begin{equation*}
\frac{\mathrm{d} \phi_{t}}{\mathrm{~d} t}(\boldsymbol{x})=\lim _{\mathrm{d} t \downarrow 0} \frac{\boldsymbol{\phi}_{t+\mathrm{d} t}(\boldsymbol{x})-\boldsymbol{\phi}_{t}(\boldsymbol{x})}{\mathrm{d} t}=\lim _{\mathrm{d} t \downarrow 0} \frac{\phi_{\mathrm{d} t} \circ \phi_{t}(\boldsymbol{x})-\boldsymbol{\phi}_{t}(\boldsymbol{x})}{\mathrm{d} t}=\boldsymbol{f} \circ \phi_{t}(\boldsymbol{x}) \tag{1.40}
\end{equation*}
$$

hence it follows

$$
\begin{align*}
& \partial_{\boldsymbol{x}} \otimes \dot{\boldsymbol{\phi}}_{t}(\boldsymbol{x})=\frac{\mathrm{d}}{\mathrm{~d} t} \partial_{\boldsymbol{x}} \otimes \boldsymbol{\phi}_{t}(\boldsymbol{x})= \\
& \quad\left(\partial_{\boldsymbol{x}} \otimes \boldsymbol{\phi}_{t}\right)(\boldsymbol{x}) \cdot \partial_{\boldsymbol{\phi}_{t}(\boldsymbol{x})} \boldsymbol{f} \circ \boldsymbol{\phi}_{t}(\boldsymbol{x})=\left(\partial_{\boldsymbol{\phi}_{t}(\boldsymbol{x})} \otimes \boldsymbol{f}\right)^{\mathrm{t}} \circ \boldsymbol{\phi}_{t}(\boldsymbol{x}) \cdot\left(\partial_{\boldsymbol{x}} \otimes \boldsymbol{\phi}\right)_{t}(\boldsymbol{x})=\mathrm{A}_{t} \mathrm{~F}_{t} \tag{1.41}
\end{align*}
$$

Of particular interest is the variation with respect to initial data

Definition 1.1. We will refer to the quantity

$$
\begin{equation*}
\mathrm{F}_{t}=\left(\partial_{\boldsymbol{x}} \otimes \phi_{t}\right)(\boldsymbol{x}) \tag{1.42}
\end{equation*}
$$

as the fundamental solution of the linearized dynamics.
By construction (1.42) satisfies the initial condition

$$
\begin{equation*}
\mathrm{F}_{0}=1 \tag{1.43}
\end{equation*}
$$

Namely from

$$
\begin{equation*}
\phi_{0}(x)=\boldsymbol{x} \tag{1.44}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\mathrm{F}_{0} \equiv \partial_{\boldsymbol{x}} \otimes \phi_{0}(\boldsymbol{x})=1 \tag{1.45}
\end{equation*}
$$

Example 1.3. Let us consider again

$$
\begin{equation*}
\dot{x}_{t}=\alpha x_{t}^{2} \quad \Rightarrow \quad x_{t}=\frac{1}{\frac{1}{x}-\alpha t} \tag{1.46}
\end{equation*}
$$

We have then

$$
\begin{equation*}
\partial_{x} x_{t}=\frac{1}{\left(\frac{1}{x}-\alpha t\right)^{2} x^{2}}:=x_{t}^{\prime} \tag{1.47}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
\dot{x}_{t}^{\prime}=\frac{2 \alpha}{\left(\frac{1}{x}-\alpha t\right)^{3} x^{2}}=2 \alpha x_{t} x_{t}^{\prime} \tag{1.48}
\end{equation*}
$$

as expected form direct differentiation of the ordinary differential equation in (1.46).

2 Flows: terminology

Definition 2.1 (Homeomorphism). Let $D \subset \mathbb{R}^{n}$ be an open domain. A map $\phi: D \mapsto D$ is called an homeomorphism if it is continuous and admits a continuous inverse.
Definition 2.2 (Diffeomorphism). Let $D \subset \mathbb{R}^{n}$ be an open domain. A map $\phi: D \mapsto D$ is called a diffeomorphism if it is continuously differentiable and admits a continuously differentiable inverse.

Definition 2.3. Similarly, for all $r \geq 1, a C^{r}$-diffeomorphism is an invertible map $\phi: D \mapsto D$ such that both ϕ and ϕ^{-1} admit continuous derivatives up to order r.
Definition 2.4 (flow). A one parameter family of diffeomorphisms Φ_{t}

$$
\begin{equation*}
\Phi: \mathbb{R} \times \mathbb{R}^{n} \mapsto \mathbb{R}^{n} \tag{2.1}
\end{equation*}
$$

such that

$$
\begin{align*}
& \Phi_{0}=1 \\
& \Phi_{t} \Phi_{s}=\Phi_{t+s} \tag{2.2}
\end{align*}
$$

is called flow.
The definition of flow implies $\Phi_{-t}=\Phi_{t}^{-1}$ and therefore that Φ forms a one parameter t group of transformations. The combined use of the existence and uniqueness theorems for (1.1) allows us to conclude that
Proposition 2.1. The solution of (1.1) regarded as the map $\phi: \mathbb{R} \times D \mapsto D$ is a flow to which we will also refer as the fundamental solution of (1.1).

3 Evolution of volumes

Proposition 3.1. Let $\boldsymbol{f} \in \mathrm{C}^{r}(D)$ with $r \geq 1$ and let $M \subset D$. Let us denote by M_{t} the image of M through the flow ϕ of (1.1) with \boldsymbol{f} sufficiently regular. Let us define

$$
\begin{equation*}
V_{t}^{[M]}=\operatorname{Vol}\left(M_{t}\right) \tag{3.1}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\dot{V}_{t}^{[M]}=\int_{M_{t}} \mathrm{~d}^{n} x\left(\partial_{\boldsymbol{x}} \cdot \boldsymbol{f}\right)(\boldsymbol{x}) \tag{3.2}
\end{equation*}
$$

Proof. The flow being a diffeomorphism means that

1. ϕ is differentiable with the initial data

$$
\begin{equation*}
V_{t}^{[M]}=\int_{M_{t}} \mathrm{~d}^{n} x=\int_{M} \mathrm{~d}^{n} x\left|\operatorname{det}\left(\partial_{\boldsymbol{x}} \otimes \boldsymbol{\phi}_{t}\right)(\boldsymbol{x})\right| \tag{3.3}
\end{equation*}
$$

2. ϕ is invertible thus

$$
\begin{equation*}
\phi_{0}(\boldsymbol{x})=\boldsymbol{x} \tag{3.4}
\end{equation*}
$$

implies

$$
\begin{equation*}
\operatorname{det}\left(\partial_{\boldsymbol{x}} \otimes \boldsymbol{\phi}_{0}\right)(\boldsymbol{x})=\operatorname{det} 1=1 \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left(\partial_{\boldsymbol{x}} \otimes \phi_{t}\right)(\boldsymbol{x})>0 \tag{3.6}
\end{equation*}
$$

The strict inequality holds because otherwise

$$
\begin{equation*}
\mathrm{F}_{t}=\left(\partial_{\boldsymbol{x}} \otimes \boldsymbol{\phi}_{t}\right)(\boldsymbol{x}) \tag{3.7}
\end{equation*}
$$

solving the associated linearized dynamics

$$
\begin{equation*}
\dot{\boldsymbol{x}}^{\prime}=\boldsymbol{x}^{\prime} \cdot \partial_{\boldsymbol{x}_{t}} \boldsymbol{f}\left(\boldsymbol{x}_{t}\right) \equiv\left(\partial_{\boldsymbol{x}_{t}} \otimes \boldsymbol{f}\right)\left(\boldsymbol{x}_{t}\right) \cdot \boldsymbol{x}^{\prime} \tag{3.8}
\end{equation*}
$$

would not be invertible. This is a contradiction because F_{t} is the unique fundamental solution of the linearized dynamics.

We arrived at

$$
\begin{equation*}
V_{t}^{[M]}=\int_{M_{t}} \mathrm{~d}^{n} x=\int_{M} \mathrm{~d}^{n} x \operatorname{det}\left(\partial_{\boldsymbol{x}} \otimes \boldsymbol{\phi}_{t}\right)(\boldsymbol{x}) \tag{3.9}
\end{equation*}
$$

We observe that for any strictly positive matrix A the equality

$$
\begin{equation*}
\ln \operatorname{det} A=\operatorname{tr} \ln A \tag{3.10}
\end{equation*}
$$

holds true. Then

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{tr} \ln \partial_{\boldsymbol{x}} \otimes \boldsymbol{\phi}_{t}=\operatorname{tr}\left(\partial_{\boldsymbol{x}} \otimes \boldsymbol{\phi}_{t}\right)^{-1} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\partial_{\boldsymbol{x}} \otimes \boldsymbol{\phi}_{t}\right) \\
& \quad=\operatorname{tr}\left(\partial_{\boldsymbol{x}} \otimes \boldsymbol{\phi}_{t}\right)^{-1}\left(\partial_{\boldsymbol{x}} \otimes \boldsymbol{\phi}_{t}\right) \partial_{\boldsymbol{x}_{t}} \otimes \boldsymbol{f}\left(\boldsymbol{x}_{t}\right)=\operatorname{tr} \partial_{\boldsymbol{x}_{t}} \otimes \boldsymbol{f}\left(\boldsymbol{x}_{t}\right)=\left(\partial_{\boldsymbol{x}_{t}} \cdot \boldsymbol{f}\right)\left(\boldsymbol{x}_{t}\right) \tag{3.11}
\end{align*}
$$

References

[1] N. Berglund. Geometrical theory of dynamical systems. ETH lecture notes, 2001, arXiv:math/0111177.
[2] S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos, volume 2 of Texts in applied mathematics. Springer, 2 edition, 2003.

