Integral equations

HW 7

Again only five exercises.

1.

Show that the set of Dirichlet eigenvalues of A on £ C R? is invariant
under rotations, reflections and translations of 2.

Given A > 0 and Q C R? let AQ = {\z; x € Q}. What can you say
about the Dirichlet—eigenvalues of \Q27

For the next two exercises fix a bounded domain Q C R?, let
C3(Q) = {u € C*(Q) N C(Q); ulpn =0}

and define )
A = vaﬂm(g).
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Assume u € C3(Q) is such that
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i.e we attain the minimum at u. Prove that )\, is a Dirichlet eigenvalue
of —A on Q with eigenvalue u. Hint: Given any v € C%(Q) study the
function
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at origin.

. Prove that the A; < X for all Dirichlet eigenvalues A of —A on €.

. Define
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{Cos k+1)ssinkt —sin(k+ 1)scoskt}, s, t € R.

Prove that the integral operator with kernel K(s,t) on interval [0, 27]
has no eigenvalues.



