Integral equations

$\rm HW~7$

Again only five exercises.

- 1. Show that the set of Dirichlet eigenvalues of Δ on $\Omega \subset \mathbb{R}^d$ is invariant under rotations, reflections and translations of Ω .
- 2. Given $\lambda > 0$ and $\Omega \subset \mathbb{R}^d$, let $\lambda \Omega = \{\lambda x; x \in \Omega\}$. What can you say about the Dirichlet-eigenvalues of $\lambda \Omega$?

For the next two exercises fix a bounded domain $\Omega \subset \mathbb{R}^d,$ let

$$C^{2}_{\partial}(\Omega) = \{ u \in C^{2}(\Omega) \cap C(\overline{\Omega}); \ u|_{\partial\Omega} = 0 \}$$

and define

$$\lambda_1 = \inf_{w \in C^2_{\partial}(\Omega)} \frac{\|\nabla w\|^2_{L^2(\Omega)}}{\|w\|^2_{L^2(\Omega)}}.$$

3. Assume $u \in C^2_{\partial}(\Omega)$ is such that

$$\lambda_1 = \frac{\|\nabla u\|_{L^2(\Omega)}^2}{\|u\|_{L^2(\Omega)}^2},$$

i.e we attain the minimum at u. Prove that λ_1 is a Dirichlet eigenvalue of $-\Delta$ on Ω with eigenvalue u. **Hint**: Given any $v \in C^2_{\partial}(\Omega)$ study the function

$$f(\varepsilon) = \frac{\|\nabla(u + \varepsilon v)\|_{L^2(\Omega)}^2}{\|u + \varepsilon v\|_{L^2(\Omega)}^2},$$

at origin.

- 4. Prove that the $\lambda_1 \leq \lambda$ for all Dirichlet eigenvalues λ of $-\Delta$ on Ω .
- 5. Define

$$K(s,t) = \sum_{k=0}^{\infty} \frac{1}{(k+1)^2} \{ \cos(k+1)s\sin kt - \sin(k+1)s\cos kt \}, \ s, \ t \in \mathbb{R}.$$

Prove that the integral operator with kernel K(s,t) on interval $[0, 2\pi]$ has no eigenvalues.