Integral equations HW 6

1. Define

$$
x_{+}^{a}=\left\{\begin{array}{l}
x^{a}, x>0 \\
0, x \leq 0 .
\end{array}\right.
$$

Determine those values $a \in \mathbb{R}$ for which x_{+}^{a} has a weak derivative in the sense that we defined in the lectures.

For the next three exercises we assume that H is a real Hilbert space. Especially the inner product $\langle\cdot, \cdot\rangle$ is an \mathbb{R}-bilinear map on $H \times H$.
2. Assume that $B: H \times H \rightarrow \mathbb{R}$ is a real bilinear map for which there exists constants $M, m>0$ such that

$$
\mid B(u, v)) \mid \leq M\|u\|\|v\|, \quad u, v \in H
$$

and

$$
m\|u\|^{2} \leq B(u, u), \quad u \in H
$$

Prove that there is a unique bounded linear operator $A: H \rightarrow H$ such that

$$
B(u, v)=\langle A u, v\rangle, \quad u, v \in H
$$

3. Prove that the operator A constructed above is a bijection.
4. Prove now the Lax-Milgram Theorem: If B is as above and $\lambda: H \rightarrow \mathbb{R}$ is a bounded linear functional, then there exists a unique element $u \in H$ such that for all $v \in H$ we have

$$
B(u, v)=\lambda(v)
$$

Let now $\Omega \subset \mathbb{R}^{n}$ be open and bounded. Consider the linear partial differential operator

$$
L=-\Delta+\sum_{k=1}^{n} b^{k}(x) \frac{\partial}{\partial x_{k}}+c(x)
$$

where the real valued functions b_{k} and c are continuous in $\bar{\Omega}$.
5. Define the bilinear form

$$
B(u, v)=\int_{\Omega}\langle\nabla u, \nabla v\rangle+\sum_{1}^{n} b^{k} \frac{\partial u}{\partial x_{k}} v+c u v d x
$$

on $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$. Prove that B satisfies the so-called energy estimates: there exists positive constants M, m and C such that

$$
|B(u, v)| \leq M\|u\|_{H_{0}^{1}(\Omega)}\|v\|_{H_{0}^{1}(\Omega)}
$$

and

$$
m\|u\|_{H_{0}^{1}(\Omega)}^{2} \leq B(u, u)+C\|u\|_{L^{2}(\Omega)}^{2}
$$

for all $u, v \in H_{0}^{1}(\Omega)$.
6. Apply the previous exercise to study the weak solvability on $H_{0}^{1}(\Omega)$ of the boundary value problem

$$
L u+\mu u=f \text { in } \Omega,\left.\quad u\right|_{\partial \Omega}=0
$$

for a large enough constant μ.

