Integral equations

HW 6

1. Define

$$x_{+}^{a} = \begin{cases} x^{a}, \ x > 0\\ 0, \ x \le 0. \end{cases}$$

Determine those values $a \in \mathbb{R}$ for which x_+^a has a weak derivative in the sense that we defined in the lectures.

For the next three exercises we assume that H is a **real** Hilbert space. Especially the inner product $\langle \cdot, \cdot \rangle$ is an \mathbb{R} -bilinear map on $H \times H$.

2. Assume that $B : H \times H \to \mathbb{R}$ is a real bilinear map for which there exists constants M, m > 0 such that

$$|B(u,v))| \le M ||u|| ||v||, \quad u, v \in H,$$

and

$$m||u||^2 \le B(u, u), \quad u \in H.$$

Prove that there is a unique bounded linear operator $A: H \to H$ such that

$$B(u,v) = \langle Au, v \rangle, \quad u, v \in H.$$

- 3. Prove that the operator A constructed above is a bijection.
- 4. Prove now the Lax-Milgram Theorem: If B is as above and $\lambda : H \to \mathbb{R}$ is a bounded linear functional, then there exists a unique element $u \in H$ such that for all $v \in H$ we have

$$B(u,v) = \lambda(v).$$

Let now $\Omega \subset \mathbb{R}^n$ be open and bounded. Consider the linear partial differential operator

$$L = -\Delta + \sum_{k=1}^{n} b^{k}(x) \frac{\partial}{\partial x_{k}} + c(x)$$

where the real valued functions b_k and c are continuous in $\overline{\Omega}$.

5. Define the bilinear form

$$B(u,v) = \int_{\Omega} \langle \nabla u, \nabla v \rangle + \sum_{1}^{n} b^{k} \frac{\partial u}{\partial x_{k}} v + cuv \, dx$$

on $H_0^1(\Omega) \times H_0^1(\Omega)$. Prove that B satisfies the so-called energy estimates: there exists positive constants M, m and C such that

$$|B(u,v)| \le M ||u||_{H^1_0(\Omega)} ||v||_{H^1_0(\Omega)}$$

and

$$m\|u\|_{H_0^1(\Omega)}^2 \le B(u, u) + C\|u\|_{L^2(\Omega)}^2$$

for all $u, v \in H_0^1(\Omega)$.

6. Apply the previous exercise to study the weak solvability on $H^1_0(\Omega)$ of the boundary value problem

$$Lu + \mu u = f$$
 in Ω , $u|_{\partial\Omega} = 0$

for a large enough constant μ .