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Motivation

Statistics: dream job of the next decade (Val Harian from Google)

◮ Massive data is generated for a relatively low price

◮ Statisticians help all sorts of people with data analyses

◮ Requires analytic talent and extensive knowledge of statistical
tools

Available courses

◮ Computational statistics

◮ Markovian modelling and Bayesian learning

◮ Bayesian theory with applications

◮ Statistical software tools: high performance computing

◮ Probabilistic Models

07.11.2012 Statistical genetics: statistical concepts in a nutshell 2 / 55
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FREQUENTIST

BAYESIAN
Approaches to statistics

What is statistics?

◮ Statistics is the study of uncertainty

◮ There is uncertainty in data and parameters

◮ Statisticians help people deal with uncertainty

Frequentist

◮ Probability is interpreted as

a long-run expected
frequency

◮ Only probabilistic
statements about

repeatable events with
uncertainty induced by
randomness are permitted

Bayesian

◮ Probability is interpreted as

a personal degree of belief

◮ Probabilistic statements

about events with
uncertainty induced by lack

of knowledge are also
permitted
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FREQUENTIST

BAYESIAN
Approaches to statistics

Frequentist

◮ Parameter θ is assumed to be fixed to some unknown value

◮ Observed data y = (y1, y2, . . . , yn) is a repeatable random
sample from a sampling distribution

◮ Confidence interval estimation and hypothesis tests have

long-run expected frequency interpretation

Bayesian

◮ Parameter θ is a random variable with prior p(θ)

◮ Probabilistic statements about θ are conditional on observed
data y

◮ Bayes’ theorem updates the prior to the posterior in the light of
observed data y

◮ Credible intervals and hypothesis test are interpreted as desired
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FREQUENTIST

BAYESIAN
Approaches to statistics

Confidence interval for a population mean µ

◮ Y = (Y1, Y2, . . . , Yn) are iid Normal(µ, σ2)

Solution 1: Frequentist confidence interval

◮ The test statistic t(Y ) = (Ȳ − µ0)/(S/
√
n) follows a

Student’s-t distribution with n− 1 degrees of freedom

◮ 1− α confidence interval for µ is obtained by

1− α = P
(

−t1−α/2 ≤
Ȳ − µ

S/
√
n
≤ t1−α/2

)

= P
(

Ȳ − t1−α/2
S√
n
≤ µ ≤ Ȳ + t1−α/2

S√
n

)

(1)

◮ The long-run expected frequency that the confidence interval
covers µ is 1− α
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FREQUENTIST

BAYESIAN
Approaches to statistics

Solution 1: Frequentist confidence interval cont’d

◮ For observed data y, the 1− α confidence interval either covers

the unknown value of µ or not

◮ So what? At least there is a 1− α probability of getting data y

for which the confidence interval covers µ, but you will never
know

freqInterval <- function(D, mean) {

int <- mean(D) + qt(c(0.05 / 2, 1 - 0.05 / 2), length(D) - 1) *

sd(D) / sqrt(length(D));

return(int[1] < mean & int[2] > mean)

}

nData <- 10000;

data <- matrix(rnorm(nData * 50, mean = 1, sd = 0.5), nData, 50);

1 - mean(apply(data, 1, freqInterval, mean = 1))

# [1] 0.0465
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FREQUENTIST

BAYESIAN
Approaches to statistics

Solution 2: Bayesian credible interval

◮ The likelihood is

p(y |µ, σ2) ∝ σ−n exp

{

−(n− 1)s2 + n(ȳ − µ)2

2σ2

}

◮ A convenient prior is

p(µ, σ2) ∝ σ−2

◮ The posterior is then

p(µ, σ2 |y) ∝ p(y |µ, σ2)p(µ, σ2)

= σ−n−2 exp

{

−(n− 1)s2 + n(ȳ − µ)2

2σ2

}
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FREQUENTIST

BAYESIAN
Approaches to statistics

Solution 2: Bayesian credible interval cont’d

◮ The marginal of µ is

p(µ |y) ∝
∫ ∞

0

p(µ, σ2 |y) dσ2

∝
∫ ∞

0

1

(σ2)n/2+1
exp

{

−(n− 1)s2 + n(µ− ȳ)2

2σ2

}

dσ2

◮ Change of variable:

x =
(n− 1)s2 + n(µ− ȳ)2

σ2
⇔ σ2 =

(n− 1)s2 + n(µ− ȳ)2

x
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FREQUENTIST

BAYESIAN
Approaches to statistics

Solution 2: Bayesian credible interval cont’d

◮ The marginal of µ is then

p(µ |y) ∝
∫ ∞

0

[
x

(n− 1)s2 + n(µ− ȳ)2

]n/2+1

×

exp
{

−x

2

}
∣
∣
∣
∣

dσ2

dx

∣
∣
∣
∣
dx

=
[
(n− 1)s2 + n(µ− ȳ)2

]−n/2
∫ ∞

0

xn/2−1e−x/2 dx

︸ ︷︷ ︸

Kernel of a χ2
n
distribution

∝
[

1 +
1

n− 1

(µ− ȳ)2

s2/n

]−n/2

a Student’s-t distribution with n− 1 degrees of freedom,

location parameter ȳ and scale parameter s2/n
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FREQUENTIST

BAYESIAN
Approaches to statistics

Solution 2: Bayesian credible interval cont’d

◮ For observed data y, the 1− α credible interval contains the

parameter µ with probability 1− α

D <- rnorm(n = 50, mean = 1, sd = 0.5);

Dbar <- mean(D); Dsd <- sd(D); n <- length(D);

u <- rt(50000, n - 1) * Dsd / sqrt(n) + Dbar;

credInt <- quantile(u, prob = c(0.025, 0.975));

0

1

2

3

4

5

6

7

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30

0.924 1.156
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FREQUENTIST

BAYESIAN
Approaches to statistics

Bayesian modeling recipe

1. Chose a parametric model indexed by parameters Θ from which

the observed data y = (y1, y2, . . . , yn) are thought to originate

2. Chose priors for the parameters Θ

3. Update the prior to the posterior by means of Bayes’ rule

p(θ |y) = p(y, θ)

p(y)
=

p(y |θ)p(θ)
∫

Θ
p(y |θ)p(θ) dθ

4. Check the model fit and sensitivity of the prior

Where do priors come from?

◮ Previous studies and published research

◮ Expert knowledge or researcher’s intuition

◮ Conjugacy or uninformative priors
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FREQUENTIST

BAYESIAN
Approaches to statistics

If Bayesian statistics is...

◮ ”What you think that classical statistics is”

◮ ”The only good statistics”

Why has not everybody used it by now?

A sketch of the history of statistics

19th century Astronomy/physics Bernoulli, Laplace, Poisson,

Legendre, Gauss, Gibbs

20th century Biology Venn, Fisher, Neyman, Wald

Cookbook statistics and

slow computers

1990 - today Everything changed...
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FREQUENTIST

BAYESIAN
Approaches to statistics

The Bayesian revolution

1950’s Metropolis sampler

1970’s Metropolis Hastings sampler

1980’s Gibbs sampler

1990’s - today Computationally intensive methods

for practical problems with complex models
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FREQUENTIST

BAYESIAN
Approaches to statistics

Summary

◮ There exists frequentist and Bayesian statistics

◮ The results from these approaches are interpreted differently

◮ Powerful enough computers made Bayesian computations
feasible

◮ In the end, use all statistical tools that help solve a problem
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Hypothesis testing

(1930’s) (1920’s) (1960’s)
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Hypothesis testing

Fisher’s p-value approach

◮ There is only a single hypothesis H, which is assumed to be

true, and a test statistic t(Y )

◮ The test statistic is used to measure the discrepancy between

what is observed from collected data and what is expected
under H
◮ Equal population means: t(X,Y ) = X̄ − Ȳ . Large values
of |t(x,y)| represent a discrepancy between the observed

data and H that the population means are equal
◮ Equal population variances: t(X,Y ) = S2

X/S
2
Y . Large or

small values of t(x,y) represent a discrepancy between the
observed data and H that the population variances are equal
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Hypothesis testing

Fisher’s p-value approach cont’d

◮ The test statistic t(Y ) is a function of the random sample and
therefore a random variable

◮ The distribution of the test statistic t(Y ) may be determined
under the assumption that H is true

◮ The p-value

P(t(Y ≥ t(y) |H is true)

is the probability of obtaining a discrepancy as represented by
t(Y ) greater than or equal to the observed value t(y) if H is
true

◮ Small p-values are equivalent with large discrepancies between
what is observed from collected data and what is expected

under H
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Hypothesis testing

Cohan J.: The earth is round (p < .05)

”[Null hypothesis significance testing] does not tell us what we want
to know, and we so much want to know what we want to know that,

out of desperation, we nevertheless believe that it does! What we
want to know is ’Given these data, what is the probability that H is

true?’ But as most of us know, what it tells us is ’Given that H is
true, what is the probability of these (or more extreme) data?’”
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Hypothesis testing

Fisher’s recipe

1. Identify the null hypothesis H and a test statistic t(Y ) with its
distribution assuming that H is true

2. Calculate t(y) from the observed data y

3. Determine the p-value P(t(Y ) ≥ t(y) |H is true)
P
ro
b
ab
ili
ty

p-value

t(y)

H

4. Reject H if the p-value is sufficiently small and otherwise reach

no conclusion

→ The hypothesis H is not rejected if it is compatible with
observed data y, but that does not proof that H is true
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Hypothesis testing

Neyman-Pearson decision-theoretic aproach

◮ There are two hypotheses, namely a null hypothesis H0 and its

complement H1

◮ A decision is prescribed, that is, rejection of either of the two

hypotheses and acceptance of the other

◮ Errors occur if H0 is respectively rejected and accepted when it
is actually true and false

H0 is true H0 is false (H1 is true)

Reject H0 Type I error (α) Correct

Accept H0

(Reject H1)
Correct Type II error (β)
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Hypothesis testing

Neyman-Pearson decision-theoretic approach cont’d

◮ Similar to Fisher’s p-value approach, a test statistic t(Y ) is
chosen and its distribution determined under the assumption

that H0 is true

◮ The probability α of rejecting H0 when it is actually true is

specified and the respective critical value c calculated

◮ The critical value c determines for which values of the test
statistic t(Y ) the null hypothesis H0 is rejected or accepted

P
ro
b
ab
ili
ty

Type I error (α)Type II error (β)

c

H0 H1
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Hypothesis testing

Rozeboom W.: The fallacy of the null-hypothesis significance test

”The null-hypothesis significance test treats ’acceptance’ or ’rejecti-

on’ of a hypothesis as though these were decisions one makes. But
a hypothesis is not something, like a piece of pie offered for dessert,

which can be accepted or rejected by a voluntary physical action.
Acceptance or rejection of a hypothesis is a cognitive process, a de-
gree of believing or disbelieving which, if rational, is not a matter of

choice but determined solely by how likely it is, given the evidence,
that the hypothesis is true.”
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Hypothesis testing

Neyman-Pearson’s recipe

1. Identify the null hypothesis H0 and its complement H1

2. Determine a test statistic t(Y ) and its distribution assuming
that H0 is true

3. Specify the significance level α and compute the respective

critical value c under H0

4. Calculate t(y) from the observed data y

5. Reject H0 if the test statistic t(y) > c and accept H0 otherwise

→ There exists no summary of the evidence provided by the data
with respect to the hypotheses at hand. Application of

Neyman-Pearson’s decision-theoretic approach results in a
decision about rejection or acceptance of H0 such that the

number of wrong decisions in repeated experiments is controlled
for.
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Hypothesis testing

Neyman-Pearson’s frequentist approach
freqTest <- function(D, mu0, alpha, c) {

t <- (mean(D) - mu0) / sd(D) * sqrt(length(D))

return(-c < t & c > t)

}

nData <- 10000;

data <- matrix(rnorm(nData * 50, mean = 1, sd = 0.5), nData, 50);

c <- qt(1 - 0.05 / 2, n - 1)

1 - mean(apply(data, 1, freqTest, mu0 = 1, alpha = 0.05, c = c))

# [1] 0.0527
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Hypothesis testing

Jeffreys’ Bayes factor approach

◮ There are two hypotheses H0 and H1

◮ The fundamental difference to everything before is that prior
probabilities p(H0) and p(H1) = 1− p(H0) are respectively

assigned to H0 and H1

◮ The posterior probability of H0 and H1 conditional on observed
data y is respectively

p(H0 |y) =
p(y |H0)p(H0)

p(y)
and p(H1 |y) =

p(y |H1)p(H1)

p(y)

◮ The ratio of the posterior probabilities, also called posterior
odds, is

p(H1 |y)
p(H0 |y)

=
p(y |H1)

p(y |H0)
× p(H1)

p(H0)
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Hypothesis testing

Jeffreys’ Bayes factor approach cont’d

◮ The ratio of the posterior probabilities, also called posterior

odds, is

p(H1 |y)
p(H0 |y)
︸ ︷︷ ︸

Posterior odds PO10

=
p(y |H1)

p(y |H0)
︸ ︷︷ ︸

Bayes factor B10

× p(H1)

p(H0)
︸ ︷︷ ︸

Prior odds

,

where the first term on the right hand side denotes the Bayes
factor B10 and the second term designates the prior odds

◮ The posterior odds can be converted to probability scale by

computing

p(H1 |y) =
PO10

1 + PO10
and p(H0 |y) =

1

1 + PO10
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Hypothesis testing

Jeffreys’ Bayes factor approach cont’d

◮ The Bayes factor B10 = p(y |H1)/p(y |H0) represents the
update from the prior odds of the two hypotheses to the

posterior odds in the light of observed data y

◮ Hypothesis H1 is rejected if B10 ≤ 1 and accepted, otherwise

◮ The strength of the evidence provided by observed data y in

favor of H1 compared to that of H0 is evaluated by means of
Jeffreys’ scale

B10 ≤ 1/10 Strong evidence for H0

1/10 < B10 ≤ 1/3 Moderate evidence for H0

1/3 < B10 ≤ 1 Weak evidence for H0

1 < B10 ≤ 3 Weak evidence for H1

3 < B10 ≤ 10 Moderate evidence for H1

10 < B10 Strong evidence for H1
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Hypothesis testing

Prior predictive distribution

◮ The Bayes factor B10 is the ratio of the prior predictive

distribution under H1 and H0

◮ The prior predictive distribution under Hi

p(y |Hi) =

∫

p(y | θi,Hi)p(θi |Hi) dθi

is obtained by averaging the likelihood function p(y | θi,Hi) over

all possible parameter choices weighted by the prior p(θi |Hi)

◮ The prior predictive distribution indicates how likely data Y is

to be observed prior to collecting it

◮ Obtaining a closed-form expression is not always possible, but
Monte Carlo methods and asymptotic approximations such as

Laplace’s method or the Bayesian Information Criterion are a
remedy to this problem
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Hypothesis testing

Summary

◮ Fisher’s p-value summarizes the evidence provided by observed

data y against H. It does not result in a probabilistic statement
about whether H is true

◮ Neyman-Pearson decision-theoretic approach does not contain a
summary of the evidence provided by the data with respect to
the hypotheses at hand. Their approach results in a decision

about rejection or acceptance of H0 such that the number of
wrong decisions in repeated experiments is controlled for

◮ Jeffreys’ Bayes factor approach allows probabilistic statements
about the truth of hypotheses. The required computations and
prior specifications may be difficult though
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Model comparison

Likelihood ratio test

◮ The null hypothesis H0 states that model M0 fits the observed

data y as well as M1 does, while the alternative hypothesis H1

states the opposite

◮ The test statistic is defined as

t(y) = −2 log

{

p(y | θ̂0,M0)

p(y | θ̂1,M1)

}

,

where M0 and M1 are respectively the simpler (null) and more
complex (alternative) model and θ̂0 and θ̂1 the corresponding
maximum likelihood estimates
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Model comparison

Likelihood ratio test

◮ The distribution of the test statistic

t(y) = −2 log

{

p(y | θ̂0,M0)

p(y | θ̂1,M1)

}

,

under the assumption that H0 is true, converges against a
χ2(ν) distribution as n approaches ∞ with ν being the

difference in the number of parameters between M1 and M0

◮ The observed value t(y) of the test statistic is calculated and
the hypothesis H0 that model M0 fits the data as well as M1

does is rejected if t(y) > c
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Model comparison

χ2 approximation to the likelihood ratio for a simple H0

◮ H0 : θ = θ0 and H1 : θ 6= θ0

◮ Expand the log-likelihood ℓ(θ0 |y) = p(y | θ0) as a second-order
Taylor series around the maximum likelihood estimate θ̂

ℓ(θ0 |y) ≈ ℓ(θ̂ |y) + ℓ′(θ̂ |y)(θ0 − θ̂) + ℓ′′(θ̂ |y)(θ0 − θ̂)2/2

◮ Plug the expansion into t(y) = −2ℓ(θ0 |y) + 2ℓ(θ̂ |y)

t(y) ≈ −2ℓ(θ̂ |y)− ℓ′′(θ̂ |y)(θ0 − θ̂)2 + 2ℓ(θ̂ |y)
= −ℓ′′(θ̂ |y)(θ0 − θ̂)2

◮ By the LLN and since θ̂ is a consistent estimator

−1

n
ℓ′′(θ̂ |y) P→ −E[ℓ′′(θ0 |y)] = I(θ0)
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Model comparison

χ2 approximation to the likelihood ratio for a simple H0 cont’d

◮ The maximum likelihood estimator θ̂ is asymptotically normal:
√

nI(θ0)(θ̂ − θ0)
D→ Normal(0, 1)

◮ The distribution of the test statistic t(y) converges against a
χ2(1) distribution as n approaches ∞

nI(θ0)(θ̂ − θ0)
2 D→ χ2(1)

because the square of a standard normal random variable is χ2

distributed with 1 degree of freedom
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Model comparison

Bayesian information criterion (BIC)

◮ Approximate the prior predictive distribution under Mi with

Laplace’s method

p(y |Mi) ≈ (2π)d/2det(Q)−1/2p(y | θ̂,Mi)p(θ̂ |Mi) ,

where θ̂ is the maximum likelihood estimate and Q the negative
Hessian of the log-likelihood evaluated at θ̂

◮ The BIC is derived by writing

−2 log p(y |Mi) ≈ −d log(2π) + log det(Q)− 2 log p(θ̂ |Mi)

− 2 log p(y | θ̂,Mi)

◮ By the LLN and since θ̂ is a consistent estimator

Q = −n

n
ℓ′′(θ̂ |y) P→ −nE[ℓ′′(θ0 |y)] = nI(θ0)
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Model comparison

Bayesian information criterion (BIC) cont’d

◮ −2 times the log prior predictive distribution is thus

−2 log p(y |Mi) ≈ −d log(2π) + d logn+ log det{I(θ0)}
− 2 log p(θ̂ |Mi)− 2 log p(y | θ̂,Mi)

◮ Dropping all terms that remain fixed as the sample size
approaches ∞ results in

−2 log p(y |Mi) ≈ BICi = −2 log p(y | θ̂,Mi) + d logn

◮ Small BIC values correspond to better models

◮ The Akaike Information Criterion is equal to

AICi = −2 log p(y | θ̂,Mi) + 2d

◮ Small AIC values also correspond to better models
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Model comparison

Bayesian model averaging

◮ Considering that some models perform equally well, it seems

reasonable to base inference on several models by using
Bayesian model averaging

◮ Model uncertainty is then accounted for by including
information from all models weighted by their posterior model
probability

◮ The model-averaged posterior of some quantity of interest ∆
with the same interpretation across models is given by

p(∆ |y) =
K∑

k=1

p(∆ |Mk,y)p(Mk |y)
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Model comparison

Bayesian model averaging cont’d

◮ The posterior probability of model Mk is given by

p(Mk |y) =
p(y |Mk)p(Mk)

∑K
l=1 p(y |Ml)p(Ml)

,

where p(y |Mk) denotes the marginal likelihood of model Mk

and p(Mk) the prior probability that model Mk is true

◮ Assuming uniform prior model probabilities, the approximate
posterior model probability of model Mk is using the BIC given
by

p̂(Mk | D) =
exp

{
−1

2BICk

}

∑K
l=1 exp

{
−1

2BICl

}
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Model comparison

Bayesian model averaging for logistic regression

◮ The model-averaged posterior inclusion probability of a

predictor xi is given by

p(βi 6= 0 | D) =
K∑

k=1

1Mk
(βi)p(Mk | D)

The model-averaged posterior mean of βi is given by

E[βi | D] =
K∑

k=1

E[βi |Mk,D]p(Mk | D)
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Model comparison

Bayesian model averaging for logistic regression cont’d

◮ The model-averaged posterior variance of βi is given by

V[βi | D] =

K∑

k=1

{(
V[βi |Mk,D] + E[βi |Mk,D]2

)
×

p(Mk | D)} − E[βi | D]2

◮ If the sample size of the observed data y is large, then the
posterior p(βi |y,Mk) of βi under model Mk is asymptotically

normal

◮ The mean is equal to the maximum likelihood estimator and
variance equal to respective diagonal element of the inverse of

the observed information matrix evaluated at the maximum
likelihood estimator
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Model comparison

Bayesian model averaging for logistic regression cont’d

◮ Dobutamine stress echocardiography study at the UCLA School

of Medicine from 1991 until it closed in 1996

◮ The aim of the study was to assess if measurements taken

during the stress echocardiography may be used to predict
cardiac death, heart attack or coronary heart disease

Top 5 posterior model probabilities

Rank Model Posterior
model
probability†

Cumulative
posterior mo-
del probability

Posterior
model
odds

01 M1 : posSE, dobEF, hxofHT, restwma 0.0948 0.0948 1.00

02 M2 : posSE, dobEF 0.0864 0.1812 1.10

03 M3 : posSE, dobEF, restwma 0.0818 0.2631 1.16

04 M4 : posSE, dobEF, hxofHT 0.0797 0.3427 1.19

05 M5 : posSE, dobEF, hxofHT, ecg 0.0719 0.4147 1.32
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Model comparison

Bayesian model averaging estimate

Predictor Posterior
inclusion
probability

Posterior
mean

Posterior
standard
deviation

95% equal tail in-
terval

lower upper

intercept 1.000 -0.34999 1.1031 -2.5120 1.8120

posSE 0.978 1.1126 0.2975 0.5295 1.6957

dobEF 0.882 -0.03617 0.0177 -0.0655 -0.0166

hxofHT 0.546 0.42712 0.4550 0.1586 1.4061

restwma 0.492 0.43209 0.5078 0.1647 1.5915

ecg 0.403 0.31211 0.4315 0.1419 1.4064

hxofMI 0.208 0.11074 0.2502 -0.0121 1.0750

hxofDM 0.147 0.06297 0.1811 -0.0753 0.9344

baseEF 0.132 -0.00277 0.0132 -0.0807 0.0388
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Model comparison

Summary

◮ Likelihood ratio tests require nested models and rely on

asymptotic approximations

◮ The BIC and AIC are tools that help balances model complexity

and fit, which is evaluated through the maximized likelihood.
The BIC prefers simpler models with small amounts of data, but
becomes willing to accept more complex ones with increasing

amount of data.

◮ Bayesian model averaging is a powerful tool to account for

model uncertainty. The BIC may be used to approximate
posterior model probabilities
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SNP association studies

Relationship between SNP genotype and phenotype

◮ Genetic information is stored in the DNA in form of 4

nucleotide bases

◮ The human reference genome is approximately 3 giga bases long

and any 2 humans differ in their genetic code by a small fraction

◮ Single Nucleotide Polymorphism (SNP) is a form of genetic
variation at a genetic site at which the nucleotide base between

2 humans differs
SNP

Human 1 · · · AGCTGCTGGCTTCCGCTACC · · ·
Human 2 · · · AGCTGCTGACTTCCACTACC · · ·
Human 3 · · · AGTTGCTGGCTTCCACTACC · · ·
Human 4 · · · AGCTGCTGGCTTCCGCTACC · · ·
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SNP association studies

Relationship between SNP genotype and phenotype cont’d

◮ The genotype is, among other factors, a strong influence on the

phenotype

◮ An association between genotype and phenotype may be

presumed for disease susceptibility, drug treatment or crop yields

◮ In case of drug treatments, some people react normally to the
treatment, whereas others show none or life-threatening effects

◮ A particular set of SNPs may be characteristic for these
phenotypes

◮ The goal of genome-wide association studies is then to reveal

SNP patterns that permit disease susceptibility screens or
personalized drug treatments
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SNP association studies

Relationship between SNP genotype and phenotype cont’d

◮ DNA carried by the chromosomes is present in 2 copies

◮ Without considering DNA copy number variation, the genotype
at a biallelic SNP is either

◮ AA - 2 copies of the common allele

◮ AB - 1 copy of each allele
◮ BB - 2 copies of the rare allele

where allele refers to the particular nucleotide base.

◮ The frequency distribution of a SNP genotype and phenotype

can be visualized in a contingency table

AA AB BB

Case n
Case
AA n

Case
AB n

Case
BB n

Case

Control n
Control
AA n

Control
AB n

Control
BB n

Control

nAA nAB nBB n
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SNP association studies

General genotype count model: prospective model

◮ The counts may be modeled directly

AA AB BB

Case n
Case
AA n

Case
AB n

Case
BB n

Case

Control n
Control
AA n

Control
AB n

Control
BB n

Control

nAA nAB nBB n

◮ In a prospective model, the phenotype is the random variable,
whereas the genotype variable is supposed to be known

◮ Under the null hypothesis H0, there exists no association
between both variables and thus

p(y | θ,H0) =

(
n

nCase

)

θn
Case

(1− θ)n
Control
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SNP association studies

General genotype count model: prospective model cont’d

◮ Assume that the prior of θ, which represents the probability of

being a case, is a Beta distribution

p(θ) =
1

B(α, β)θ
α−1(1− θ)β−1 ,

where the Beta function is equal to

1/B(α, β) = Γ(α)Γ(β)/Γ(α+ β)

◮ The prior predictive distribution is then

p(y |H0) =

(
n

nCase

)
1

B(α, β)

∫ 1

0

θn
Case+α−1(1− θ)n

Control+β−1 dθ

=

(
n

nCase

)B(nCase + α, nControl + β)

B(α, β)
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SNP association studies

General genotype count model: prospective model cont’d

◮ Under the alternative hypothesis H1, the 3 genotypes are

assumed to be independent and thus

p(y | τAA, τAB, τBB,H1) =

(
n

nCase

)
∏

i∈{AA,AB,BB}
τ
nCase
i

i ×

(1− τi)
nControl
i

◮ Assume that the prior of τi, which represents the probability of
being a case given that the genotype is i, has also a Beta

distribution
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SNP association studies

General genotype count model: prospective model cont’d

◮ The prior predictive distribution is then

p(y |H1) =

(
n

nCase

)
∏

i∈{AA,AB,BB}

1

B(α, β)×

∫ 1

0

τ
nCase
i

+α−1
i (1− τi)

nControl
i

+β−1 dτi

=

(
n

nCase

)
∏

i∈{AA,AB,BB}

B(nCase
i + α, nControl

i + β)

B(α, β)
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SNP association studies

General genotype count model: prospective model cont’d

◮ The prospective Bayes factor is

B10 =
p(y |H1)

p(y |H0)

=
B(α, β)

B(nCase + α, nControl + β)
×

∏

i∈{AA,AB,BB}

B(nCase
i + α, nControl

i + β)

B(α, β)

◮ Data-dependent hyperparameters may be used:

(α, β) = λ
(
nCase/n, nControl/n

)
,

which are uninformative in distinguishing H0 from H1 and

where λ is used to scale the effect size.
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Thank you for your attention
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