A minicourse on Genomewide association analyses (GWAS) Part III: Hot topics

Matti Pirinen FIMM, University of Helsinki

December 5th 2012

GWAS criticism

- Visscher 2012, quotes on p.1-2
 - Missing heritability
 - Missing mechanisms
 - Small effect sizes
 - Methodological flaws (e.g. population structure)

Missing heritability

- GWAS SNPs explain only at most 10-20% of the estimated genetic variance
 - We don't have power to pick out (myriad of?) still smaller effects (Yang et al. 2010)
 - We haven't covered rare variants well (Dickson et al. 2010 + replies from Wray et al. 2011 and Anderson et al. 2011)
 - Estimates of heritability may be biased (Zuk et al. 2012)

How to estimate variance explained?

A SNP with freq f and effect b: Var(xb)=2f(1-f)b²

 Only applicable to SNPs that have been identified as relevant for the phenotype

Variance component model

- Don't try estimating b for each SNP
- Estimate (joint) variance of all b over the genome
- Only 1 parameter model
- Yang et al. (2010) and Visscher (2010)
- Explains ~50% of variance of height (compare to 10% explained by GWAS SNPs)

Genetics may be non-additive

- So far we have considered only additive variance
 - Alleles act independently within and across loci
- But GxG interactions may bias heritability estimates from close relatives (twins, sibs etc)
 - Zuk et al. (2012)

Causal inference

• Cholesterol levels are associated with myocardial infarction (heart attack) risk

 Are cholesterol levels causal for MI risk? Important question for medicine.

- Causality difficult to get from observational studies
 - Observed correlation does not mean causation
 - Confounders
 - Reverse causation
- Randomized clinical trials are good
 - But Expensive, take long time

Mendelian randomisation (Lawlor et al. 2008)

 Take KNOWN genetic modifiers of cholesterol levels

- (Assumed to be) independent of confounders

- No reverse causation (genetics come first!)
- Causality seems likely, if these genetic variants are also associated with MI risk (in a consistent way w.r.t effect sizes)

- (with some exceptions, see Lawlor et al. 2008)

• Voight et al. 2012