Department of mathematics and statistics
Differential Equation II
Compensating Course Exam 17.1.2013
Remark. A candidate is allowed to use a short abstract of size A4.

1. (a) (4 points) Reduce the following differential equation of second degree to a system of first degree:

$$
\ddot{x}(t)+3 t \dot{x}(t)+x(t)^{2}=\sin t .
$$

(b) (2 points) Write for that system an initial condition related to the initial condition $x(1)=-1, \dot{x}(1)=0$ of the original equation.
2. Find in \mathbf{R} a fundamental solution set to the following homogeneous system:

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
-1 & -5 \\
1 & 3
\end{array}\right] \mathbf{x}(t)
$$

3. Give a general solution to the following system:

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{ll}
-3 & 0 \\
-1 & 1
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{c}
3 \\
-1
\end{array}\right] .
$$

4. Conserning the following autonomous system determine its critical points, their qualities (stable or unstable) and additionally calculate trajectories of its solutions in the $x y$ phase plane:

$$
\begin{aligned}
& \dot{x}(t)=x(t)^{2}-1 \\
& \dot{y}(t)=x(t) y(t) .
\end{aligned}
$$

Remark. It is neither necessary nor worth drawing trajectories.

