Differential Equations II

Exercise 5, fall 2012

1. Find by the matrix method (applying generalized eigenvectors) a fundamental solution set in \mathbf{R} for the system

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t), \quad A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right] \in \mathbf{R}^{3 \times 3} .
$$

2. Consider again the previous system. Outline briefly, how else one can find a fundamental solution set for it. Don't need to carry out the ideas.
3. Determine critical points and their qualities (stable or unstable) of the following autonomous system:

$$
\begin{aligned}
& \dot{x}=2 y-2 \\
& \dot{y}=-x+2 y .
\end{aligned}
$$

4. Determine critical points and their qualities of the following autonomous system:

$$
\begin{aligned}
& \dot{x}=-2 x+y+6 \\
& \dot{y}=x-2 y+3 .
\end{aligned}
$$

5. Determine critical points and their qualities of the following autonomous system:

$$
\begin{aligned}
\dot{x} & =x^{2}-y \\
\dot{y} & =2-x^{2}-y^{2} .
\end{aligned}
$$

6. Determine critical points of the following autonomous system:

$$
\begin{aligned}
& \dot{x}=(x+1)(y-2) \\
& \dot{y}=x^{2}-x-2 .
\end{aligned}
$$

What does the Poincaré's theorem tell about their qualities? Determine also trajectories of the system.

