Differential Equations II

Exercise 4, fall 2011

1. Find a fundamental solution set for the homogeneous system $\dot{\mathbf{x}}(t)=A \mathbf{x}(t)$, where

$$
A=\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
-8 & 14 & -7
\end{array}\right] \in \mathbf{R}^{3 \times 3}
$$

Determine also quality of the equilibrium solution $\mathbf{0}$ (stable or unstable).
2. Find a fundamental matrix for the homogeneous system $\dot{\mathbf{x}}(t)=A \mathbf{x}(t)$, where

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right] \in \mathbf{R}^{2 \times 2}
$$

3. Solve the linear system

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t)+\mathbf{f}(t), \quad A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad \mathbf{f}(t)=\left[\begin{array}{c}
-2 \\
3
\end{array}\right],
$$

by using variation. What a direct try should easier lead to a goal?
4. Solve the linear system

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t)+\mathbf{f}(t), \quad A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right], \quad \mathbf{f}(t)=\left[\begin{array}{l}
-\cos t \\
-\sin t
\end{array}\right],
$$

by using an appropriate direct try. It leads to an ordinary 4×4 linear, algebraic system of parameters.
5. Find for the following system a fundamental solution set in \mathbf{R} by the matrix method, which applies generalized eigenvectors:

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
-1 & 1 \\
-1 & -3
\end{array}\right] \mathbf{x}(t)
$$

A tip. Equations (5.31) and (5.32) in the lecture material.

