Differential Equations II

Exercise 3, fall 2012

1. Reduce the differential equation $y^{\prime \prime}-\frac{x}{3} y^{(3)}+x y y^{\prime}-2 x^{3}=0$ to a system of first order and of normal form. Is that system linear?
2. Show that the pair $\left(\mathbf{x}_{1}(t), \mathbf{x}_{2}(t)\right)=\left(\left[1 e^{t}\right]^{T},\left[e^{-t} 2\right]^{T}\right)$ of functions is a fundamental solution set in \mathbf{R} to the linear homogeneous 2×2-system

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
1 & -e^{-t} \\
2 e^{t} & -1
\end{array}\right] \mathbf{x}(t)
$$

3. Look for the following homogeneous 2×2-system a fundamental solution set in \mathbf{R} and give also a general solution:

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
2 t & 3 t^{2} \\
0 & 2 t
\end{array}\right] \mathbf{x}(t) .
$$

A tip. One of the equations luckily happens to be simple.
Below (and in what later follows) the notation $\mathbf{0}=(0, \cdots, 0) \in \mathbf{R}^{n}$ will be used.
4. Give a general solution in \mathbf{R} to the following homogeneous 2×2-system:

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right] \mathbf{x}(t)
$$

Briefly, is the trivial solution $\mathbf{x}(t) \equiv \mathbf{0}$ a stable or unstable equilibrium solution?
5. Look for the following homogeneous system a fundamental solution set in \mathbf{R} :

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{ll}
-3 & 1 \\
-2 & 0
\end{array}\right] \mathbf{x}(t)
$$

Briefly, is the trivial solution $\mathbf{x}(t) \equiv \mathbf{0}$ a stable or unstable equilibrium solution?
6. Look for the following homogeneous system a fundamental solution set in \mathbf{R} :

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{ccc}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & -1
\end{array}\right] \mathbf{x}(t) .
$$

Briefly, is the trivial solution $\mathbf{x}(t) \equiv \mathbf{0}$ a stable or unstable equilibrium solution?

