Differential Equations II

Exercise 2, fall 2012

1. Solve by elimination method the following linear system of first order:

$$
\mathbf{y}^{\prime}(x)=\left[\begin{array}{cc}
-2 & 1 / 2 \\
2 & -2
\end{array}\right] \mathbf{y}(x), \quad \mathbf{y}=\left(y_{1}, y_{2}\right)
$$

A tip. Write first the pair in a traditional form by means of functions y_{1} and y_{2}.
2. Reduce the following scalar equations to systems of first order:
(a) $y^{\prime \prime}+\sin x y^{\prime}+y=\cos x$,
(b) $y^{(4)}+x^{4} y=\sin x$.
3. (a) Reduce the following system to a system of first order and normal form:

$$
\begin{aligned}
& \dot{y}=f(t, x, y) \\
& \ddot{x}=g(t, x, y, \dot{x}) .
\end{aligned}
$$

(b) What about the second equation being

$$
\ddot{x}=g(t, x, y, \dot{x}, \dot{y}) ?
$$

4. Let y be a (maximal) solution to the initial value problem

$$
y^{\prime}=e^{x} \sin x \cos y, \quad y(0)=0
$$

Show by the global EU Theorem 4.6, that y is defined on the whole \mathbf{R}.
A tip. The Mean Value Theorem.
5. The same as above, but now by the "Go Away" Theorem 4.7.

A tip. Trivial solutions.
6. A general solution to Problem 2 in Exercise 1 has four parameters. Show exactly: that solution gives all the solutions to the involved differential equation. A tip. Theorem 5.4, but if you prefer to reduce to a system, Theorem 5.3 (or 5.5).

