Differential Equations II

Exercise 1, fall 2012

1. Solve the following linear differential equation of second order:

$$
y^{\prime \prime}-3 y^{\prime}-4 y=4 x+7
$$

2. Solve by adapting the theory of linear equations of second order the following homogeneous equation of fourth order:

$$
y^{(4)}-7 y^{\prime \prime}+6 y=0 .
$$

Does not need to give exact reasons you have all the solutions for.
3. Calculate four first Picard's approximations for the initial value problem

$$
y^{\prime}=y+1, \quad y(0)=-1
$$

and compare to the exact solution.
4. Calculate four first Picard's approximations for the initial value problem

$$
y^{\prime}=y+1, \quad y(0)=0,
$$

and compare to the exact solution.
5. Is the function $f(x, y)=x^{2} \sin y$ in the set $I \times J$ uniformly Lipchitz continuous with respect to y, when
(a) $I=\mathbf{R}$ and $J=[0,1]$,
(b) $I=[0,1]$ and $J=[0,1]$,
(c) $I=[0,1]$ and $J=\mathbf{R}$?

Arguments. If it does, give also (any) valid Lipschitz constant.
6. Where in domains of \mathbf{R}^{2} (as large as possible) the differential equation

$$
y^{\prime}=f(x, y)=\sqrt[5]{(y-1)^{2}}
$$

satisfies the conditions of the local EU-Theorem 4.4? Short arguments.
Remark. The equation is defined in the whole plane \mathbf{R}^{2}, indeed.

