Department of mathematics and statistics
Differential Equations I
Course Exam 16.10.2012
Remark. Use of an abstract page of the size A4 is allowed to a candidate.

1. Solve the differential equation

$$
(\cos x+\sin y)+(\sin y+x \cos y) y^{\prime}=0 .
$$

An implicit solution is sufficient.
2. Solve the initial value problem

$$
x^{3} y^{\prime}-2 x^{2} y=4, \quad y(-1)=1,
$$

and give also a maximal solution interval of it.
3. Solve the differential equation

$$
2 y^{\prime \prime}+4 y^{\prime}+4 y=x e^{x} .
$$

4. We expect from a behavior of a function $x=x(t)$ as follows: A factor makes the function to increase at the rate proportional to a square of a value at present, a as a proportional constant, and another factor in turn makes it to decrease at the rate proportional to a cubic value, b as a proportional constant. Additionally suppose $a>b>0$.
(a) (2 p) Knowing that write a differential equation for the function $x(t)$. Of what basic type is it?
(b) $(4 \mathrm{p})$ Let $x(t)$ be a particular solution to the equation satisfying the initial condition $x(0)=1$. What can you tell about its maximal solution interval and limits when $t \rightarrow \pm \infty$? It is not necessary to solve the equation.
