Differential Equations I

Exercise 4, fall 2012

1. Find the curves of the form $y=y(x)$ such that for all x_{0} a tangent line, set at $\left(x_{0}, y\left(x_{0}\right)\right)$, intersect the x-axis at $\left(x_{0}+x_{0}^{2} / k, 0\right)$, where $k \neq 0$ is a constant.
2. Let temperatures of a body and its environment be functions of time t, $T_{1}=T_{1}(t)$ and $T_{2}=T_{2}(t)$, and suppose they interact so that at each moment their ranges of change are proportional to the difference $T_{1}(t)-T_{2}(t)$ between temperatures, $a<0$ and $b>0$ as proportional constants (so called Newton's law of cooling).
(a) Form a pair of differential equations for the functions T_{1} and T_{2}.
(b) Can you solve that?

A tip. (b) Eliminate the pair to one equation.
3. Solve the equation

$$
y^{\prime}=(x+y+2)^{2} .
$$

4. Solve the equation

$$
x^{2}-x y y^{\prime}+y^{2}=0
$$

5. Solve the equation

$$
\frac{d y}{d x}=\frac{-3 x+y+4}{x+3 y+2}
$$

6. A falcon flies at a high of 200 meters, when it notices a rabbit precisely below. At the same time the rabbit recognizes the falcon and speeding up like a lightning it runs at the rate of $10 \mathrm{~m} / \mathrm{s}$ straight at his home hole. Constantly the falcon falls straight at the rabbit at the rate of $35 \mathrm{~m} / \mathrm{s}$. Does the falcon catch up the rabbit before it arrives his hole, when that is at a distance of 60 meters?
