Differential Equations I

Exercise 1, fall 2012

1. Name which of following ones are ordinary differential equations, name also an unknown function and give order of the equation:
(a) $\ddot{x}=(t+x-2)^{3}$,
(b) $x y+\sin \left(x y^{\prime}\right)^{2}-5 y^{\prime}=1$,
(c) $y=\frac{\partial z}{\partial x}-2 x y+y z$,
(d) $y^{\prime}(x)=y\left(x^{2}\right)$.

In the last equation all in brackets belongs to an argument of the function.
2. Of following ones name and solve separable differential equations:
(a) $y^{\prime}=2 x-2 x y$,
(b) $\quad y^{\prime}=\cos (x-y)$
(c) $y^{\prime}=2 x-2 y$.

Nonseparability is not needed to prove.
3. Solve the equation

$$
1+2 x-2 y y^{\prime}=0
$$

with the initial conditions

$$
\text { (a) } \quad y(0)=-2, \quad(b) \quad y(0)=0
$$

4. Solve the initial value problem (IVP)

$$
y^{\prime}=(y-2)(y-1), \quad y(0)=0
$$

What is a maximal solution interval of it?
5. Does the existence and uniqueness Theorem (EU-teorem) 1.2 guarantee a unique solution to the IVP
(a) $y^{\prime}+\cos ^{3} y=\sin ^{4} x, \quad y(\pi)=0$,
(b) $y^{\prime}+\cos ^{3} y=\sqrt{\sin x}, \quad y(\pi)=0$,
(c) Problem 3a,
(d) Problem 3b?
6. Of which type is the equation at point 2 c , that is $y^{\prime}=2 x-2 y$?

A tip. Partial integration in the end.

